EXHIBIT B

File No.: _____ Date Submitted by Applicant: _____ Date Deemed Complete: _____

400 Main Street Cottage Grove, OR 97424

TYPE III PERMIT APPLICATION

To: City of Cottage Grove Planning Commission

	Applicant	Querie and LLC	Phone No.: 503-929-3331			
	Name: Pine	Springs, LLC	Phone No.: 000 020 0001			
	Mailing Address:	3025 West 7th Place, Eu				
	Email Address:	Email Address: colin@timberviewconst.com				
	Status:	Owner	Agent			
	Note: If agent you	a must have owner's consen	t and signature.			
	Owner (if not app	licant)				
	Owner's Name:	· · · · ·	Phone No.:			
	Owner's Mailing	Address:				
	Map & Tax Lot N	Number: 20-03-27-20 tax	ad, Cottage Grove OR 97424 Lots 3701, 3702 (portion only) The parking and common open space			
		:				
<u>).</u>	Request for Cons	ideration	Master Planned Development			
<u>).</u> 0.	Type of Land Use Options: Condition	e Application applying for: onal Use, Greenway Conditi	Master Planned Development ional Use, Cottage Industry, Historic no plan amendment required), Master s, Subdivisions, Variance (Class C)			
	Type of Land Use Options: Condition Alteration, Land Planned Develop	e Application applying for: onal Use, Greenway Conditi Use District Map changes (in ments, Site Design Reviews	ional Use, Cottage Industry, Historic no plan amendment required), Master s, Subdivisions, Variance (Class C) ther land use permit applications?			
0.	Type of Land Us Options: Condition Alteration, Land Planned Develop Is this application	e Application applying for: onal Use, Greenway Conditi Use District Map changes (n ments, Site Design Reviews n filed in association with of	ional Use, Cottage Industry, Historic no plan amendment required), Master s, Subdivisions, Variance (Class C)			

City of Cottage Grove

Type III Permit Application

Required Information

Narrative Statement: This application must be filed with one copy of a narrative statement that explains how the application satisfies each and all of the relevant criteria and standards in sufficient detail for review and decision-making.

Additional information may be required under the specific application Note:

requirements for each approval, e.g., Chapters 4.2 (Land Use Review), 4.3 (Land Divisions), 4.4 (Conditional Use), 4.5 (Master Planned Developments), 4.6 (Modifications), 4.8 (Code Interpretations), 4.9 (Miscellaneous Permits) and 5.1 (Variances).

Plans: Three (3) sets of plans, including one (1) set of plans in a reproducible form that is no larger than 11"x17" in size. Content of plans will vary with application type. Refer to submittal requirements for specific application type.

Neighborhood Meeting verification (for Master Planned Developments, Conditional Uses and Subdivisions). Must include copy of meeting notice and minutes and/or recording of meeting.

Non-refundable application fee.

Signature

I hereby request a Type III Permit on the above described real property, which is either owned by or under contract of sale to the applicant, and is located within the City of Cottage Grove, Oregon.

I hereby acknowledge that this application is not considered filed and complete until all of the required information has been submitted as determined by the Community Development Director and all required fees have been paid in full. Once the original application is submitted, Staff has 30 days to determine whether an application is complete. Within 30 days a letter will be mailed to you either deeming the application complete or requesting additional information. If additional information is requested you have 150 days to either: submit the missing information, submit some of the information and written notice that no other information will be provided, or submit a written notice that none of the missing information will be provided. Once your application is deemed complete you will be assigned a public hearing date before the Planning Commission and Staff will have 120 days to complete the processing of your application. (ORS 227.178)

Owner:	1	Agent:
Signature:		
Name: Brent Lanz	for Pine Springs, LLC	
Date:		
	Office Use Only	
Date Application Received:	Initials:	
Date Application Complete:		
Applicant Notified of Completeness	s: Initials:	

City of Cottage Grove

Type III Permit Application

PINE SPRINGS MASTER PLAN

Submitted to: CITY OF COTTAGE GROVE 400 E. Main Street Cottage Grove, OR 97424

> Prepared For: PINE SPRINGS, LLC 3025 West 7th Place Eugene, OR 97402

Submittal Date: February 22, 2023

P.O. Box 50721 Eugene, OR 97405 www.bishowconsulting.com

APPLICATION CONTENTS

PART I.	SUMMARY 4
PART II.	APPLICATION SUBMITTAL REQUIREMENTS
PART III.	CONCEPTUAL MASTER PLAN APPROVAL CRITERIA 11
	A. Comprehensive Plan
	B. Land Division Chapter
	C. Chapter 2 and 3 Standards 13
	D. Chapter 4 Standards 19
	E. Open Space
PART IV.	CONCLUSION

EXHIBITS

- Exhibit A Assessor's Map
- Exhibit B Vicinity Map
- Exhibit C Zoning Map
- Exhibit D Aerial Photo
- Exhibit E Neighborhood Meeting Documentation
- Exhibit F Pine Springs at Village Green TIA
- Exhibit G Geotechnical Engineering Investigation
- Exhibit H Stormwater Report
- Exhibit I Title Report

DRAWINGS (Full Size)

Dougherty Landscape Architects

- Sheet LA-1 Site Plan
- Sheet LA-2 Preliminary Landscape Master Plan
- Sheet LA-3 Tree Preservation Map
- Sheet LA-4 Tree Preservation Data

A & O Engineering

- Sheet C-1.0 Paving and Grading Plan
- Sheet C-2.0 Utility Plan
- Sheet C-3.0 Civil Details
- Sheet C-3.1 Civil Details
- Sheet C-3.2 Storm Facility Details

Rodd Hansen Architect, LLC

Sheet A3.18-plexSheet A3.28-plexSheet A6.18-plexSheet A6.28-plexSheet A6.38-plexSheet A6.48-plexSheet A3.1Leasing UnitSheet A6.2Leasing UnitSheet A6.3Leasing Unit

FORMS AND FEES

Type III Land Use Application Form Application Fee

PART I. – SUMMARY

Project Name:	Pine Springs Apartments
	Develop a 121-unit apartment complex with an on-site manager and leasing office, common open space amenities, and parking. The 2-story apartment buildings will offer 2-bedroom, 2-bath units with outdoor patios and balconies.
Application:	Pine Springs Master Plan
Location:	Row River Road, Cottage Grove OR 97424
Assessor Map:	20-03-27-20 (Lot 3 of Village Green Subdivision)
Size:	7.9 Acres (new Lot 3)
Zoning:	CT Commercial Tourist
Plan Designation:	Tourist Commercial
Existing Uses:	Vacant, part of the former Village Green Hotel
Proposed Use:	New apartments with amenities such as off-street parking, on- site pedestrian circulation and open space.
Pre-Application Mtg:	January 4, 2023
Neighborhood Mtg:	February 1, 2023

Project Design Team:

Owner/Applicant

Pine Springs, LLC Colin Kelley 3025 West 7th Place Eugene, OR 97402 colin@timberviewconst.com

Landscape Architect

David Dougherty, ASLA Dougherty Landscape Architects 474 Willamette Street, Suite 305 Eugene, OR 97401 davidd@dladesign.com

Civil Engineer

Scott Morris, PE A & O Engineering 380 Q Street Springfield, OR 97477 <u>scottmorris@ao-engr.com</u>

Traffic Engineer

Kelly Sandow, P.E. Sandow Engineering 160 Madison St, Ste A Eugene, OR 97402 kellysandow@sandowengineering.com

Land Use Planner

Teresa Bishow, AICP Bishow Consulting LLC P.O. Box 50721 Eugene, OR 97405 teresa@bishowconsulting.com

Architect

Rodd Hansen, AIA Rodd Hansen Architect 1551 Oak Street, Ste A Eugene, OR 97401 Rodd@rharchitectural.com

Surveyor

Brent Knapp, PLA, CWRE i.e. Engineering, Inc. 809 SE Pine Street Roseburg, OR 97470 knapp@ieengineering.com

Geotechnical Engineer

Ron Derrick Branch Engineering 301 5th Street Springfield, OR 97477 RonD@branchengineering.com

2022 Conditions & Key Problems:

In 2022, the Green Village Hotel was not operating in a sustainable manner due to:

- Substantial decline in the hotel and tourist industry
- Increased hotel competition in the region
- Insufficient modern amenities
- Several buildings are in substandard or blighted conditions.
- The 6.5-acre garden, seasonal pool and hot tub require extensive maintenance substantially impacting operational costs.

View of one-story building renovated for hotel guest rooms and currently proposed to be retained on proposed Lot 1 of the Village Green Subdivision.

View of building in substandard condition when applicant purchased the site. The substandard buildings on proposed Lot 3 were demolished in 2022.

Planning Objectives:

The key planning objective is to develop an apartment complex providing needed housing for the community. The apartment complex will provide additional support population for nearby commercial uses and stimulate economic development. The residential use of the property will also compliment the hotel, the small scale commercial uses on the vacant commercial lots, and the RV Park.

Development Schedule:

The Pine Springs Master Plan is not a phased project.

Following City approval of the Conceptual Master Plan, the developer intends to seek City approval of the Final Master Plan and Site Plan Review applications. Once the planning entitlement phase is complete, the developer plans to promptly move forward with construction.

The construction will comply with applicable standards including clear fire access routes being maintained at all times.

Applicant's Intentions:

Following approval of the Village Green Subdivision Final Plat, the applicant intends to sell lots 1, 2, 4 and 5. The sale of these lots will allow new property owners to re-open the hotel, continue to operate the RV Park, and develop the two vacant lots fronting Row River Road.

The applicant intends to construct and maintain ownership of the Pine Springs Apartments.

PART II. – APPLICATION SUBMITTAL REQUIREMENTS

14.45.140 Master Planned Development – Overlay Zone & Concept Plan Submission

A. General Submission Requirements. The applicant shall submit an application containing all of the general information required for a Type III procedure, as governed by Section <u>14.41.400</u>. In addition, the applicant shall submit the following:

1. A statement of planning objectives to be achieved by the planned development through the particular approach proposed by the applicant. This statement should include a description of the character of the proposed development and the rationale behind the assumptions and choices made by the applicant.

See Part I, page 7 for statement of planning objectives.

2. A development schedule indicating the approximate dates when construction of the planned development and its various phases are expected to be initiated and completed.

See Part I, page 7 for development schedule.

3. A statement of the applicant's intentions with regard to the future selling or leasing of all or portions of the planned development.

See Part I, page 7 for statement of applicant's intentions.

4. Narrative report or letter documenting compliance with the applicable approval criteria contained in Section <u>14.45.150</u>.

This written narrative provides evidence demonstrating compliance with applicable approval criteria in Section 14.45.150. See Part III.

5. Special studies prepared by qualified professionals as required by the Community Development Director or Planning Commission to determine potential traffic, geologic, water quality, wetland, sensitive habitat, archeological, natural vegetation and other impacts, and required mitigation.

This application includes technical reports prepared by qualified professionals including a geotechnical report, traffic study, stormwater calculations, and tree inventory. See <u>Exhibit F – Pine Springs at Village Green TIA</u>, <u>Exhibit G – Geotechnical Engineering</u>

Investigation, Exhibit H – Stormwater Report, Sheet LA-3 Tree Preservation Map and Sheet LA-4 Tree Preservation Data.

B. Additional Information. In addition to the general information described in Subsection "A" above, the concept plan, data, and narrative shall include the following exhibits and information:

1. Existing Conditions map, as defined in Section <u>14.42.500</u> - Site Design Review Application Submission Requirements;

See Village Green Subdivision <u>Sheet 2 Existing Conditions</u>. For additional survey drawings, please refer to the Village Green subdivision application.

2. Conceptual site plan (e.g., general land use, building envelopes, circulation, open space, utility connections, and other information necessary to convey the concept plan);

See <u>Sheet LA-1 Site Plan</u>, <u>Sheet LA-2 Preliminary Landscape Master Plan</u>, and <u>Sheet C-2.0 Utility Plan</u>.

3. Grading concept (for hillside or sloping properties, or where extensive grading is anticipated);

See Sheet C-1.0 Paving and Grading Plan.

4. Landscape concept (e.g., shows retention of existing vegetation and general planting areas);

See Sheet <u>LA-2 Preliminary Landscape Master Plan</u>, <u>Sheet LA-3 Tree Preservation</u> <u>Map</u>, and <u>Sheet LA-4 Tree Preservation Data</u>.

5. Architectural concept (e.g., information sufficient to describe architectural styles, building heights, and general materials);

In general, the two-story apartment buildings each contain eight dwellings. All units have two bedrooms and two baths. The ground floor units have a rear patio and the upper floor units have balconies. A one-story leasing office also contains a dwelling unit for an on-site manager. For more information, please see architectural drawings prepared by Rodd Hansen Architect, LLC.

6. Sign concept plan (e.g., locations, general size, style and materials of signs);

One freestanding monument sign for the Pine Springs Apartments will be located at the main entry drive east of the leasing office. The general location of the sign is shown on <u>Sheet LA-1 Site Plan</u>.

7. Copy of all existing covenants and restrictions, and general description of proposed restrictions or covenants (e.g., for common areas, access, parking, etc.);

The application includes a title report for the entire Village Green site that contains existing covenants and restrictions. See <u>Exhibit I – Title Report</u>. Proposed shared access easements are being reviewed with the Village Green Subdivision. Common areas are shown on <u>Sheet LA-2 Preliminary Landscape Master Plan</u>.

8. A copy of an approved State Access Permit, if taking new access onto a State Highway. (Ord. 2959 §5(Exh. A (part)), 2007. Formerly 4.5.140)

No new access is proposed onto a State Highway. The Pine Springs Master Plan does include proposed improvements to the existing main driveway entrance at the intersection of Row River Road and Jim Wright Way. See <u>Sheet C-1.0 Paving and</u> <u>Grading Plan.</u>

PART III. – MASTER PLANNED DEVELOPMENT APPROVAL CRITERIA

This section provides the applicable approval criteria for reviewing the proposed application followed by findings demonstrating compliance. Cottage Grove Code provisions are shown in *bold italics* followed by findings demonstrating compliance.

14.45.110 Master Planned Development – Applicability

The master planned development designation is an overlay zone that may be applied over any of the City's land use districts. An applicant may elect to develop a project as a master planned development in compliance with the requirements of this Chapter...

The Village Green site is 16.26 acres and has historically been used for a mixture of commercial and residential uses. The Pine Springs Apartments Master Planned Development consists of the portion of the Village Green site to be redeveloped for apartments. The site is zoned Commercial Tourist and multi-family use is permitted with an approved Master Plan.

14.45.150 Master Planned Development – Overlay Zone & Concept Plan Approval Criteria

A. Comprehensive Plan. All relevant provisions of the Comprehensive Plan are met;

The Cottage Grove Comprehensive Plan (Comprehensive Plan) designates the subject property as Tourist Commercial. Cottage Grove has five commercial zones to implement the various Commercial Plan designations. The Commercial Tourist (C-T) zoning applies to commercial areas adjacent to the I-5 interchange. The subject property is zoned C-T consistent with the Comprehensive Plan designation. This application does not include a request to amend the Comprehensive Plan or the zoning map.

The Comprehensive Plan goals are broad statements describing the community's aspirations for Cottage Grove and include¹:

To assure wise and efficient use of our urbanizable lands.

To take advantage of our location within commuting distance of the Eugene-Springfield area by providing for residential development and commercial services for those desiring metropolitan employment but a small town living environment.

¹ Comprehensive Plan, pages 7 and 8.

To continue to provide for tourist-oriented development.

To provide for the housing needs of present and future residents by encouraging the availability of housing units priced within the financial capabilities of area residents and allow for flexibility of housing location, type and density.

The Comprehensive Plan contains the following general policies:

The GENERAL RESIDENTIAL plan land use category will provide for the majority of future residential needs. For MEDIUM DENSITY RESIDENTIAL needs both the plan amendments to MEDIUM DENSITY RESIDENTIAL or the Planned Unit Development process for large parcels will be relied upon to assure that sufficient land, in addition to that shown on the Land Use Diagram, is made available for multiple family residential uses.²

Preserve tourist-commercial areas for highway-oriented tourist developments with Commercial Tourist (C-T) zoning.³

The goals and policies listed above demonstrate the community's desire for new medium density residential development and a strong local economy. The Comprehensive Plan and the C-T zone allow medium density residential development based on an approved master plan. The allowance of medium density housing helps assure sufficient land is available to meet projected population growth. The Comprehensive Plan also recognizes that, *"Tourist commercial (leisure and hospitality) uses typically require direct access to I-5 but also locate in the Downtown Historic District."*⁴

As shown on <u>Sheet LA-1 Conceptual Site Plan</u> submitted with the Village Green subdivision application, the development site will provide a mix of uses including tourist commercial and medium density residential. The Village Green Conceptual Site Plan provides a framework for redevelopment to improve the financial stability of the hotel, allow for a few new commercial uses and provide new apartments. The proposed land uses are consistent with the Comprehensive Plan.

The Cottage Grove Hillsides Map adopted as part of the Comprehensive Plan does not identify the subject property as in a hillside area.

The Cottage Grove Historical Sites Map adopted as part of the Comprehensive Plan does not identify any historic resources on the subject property.

² Comprehensive Plan Housing Recommendation 12, page 11.

³ Comprehensive Plan Commercial Policy 5, page 20.

⁴ Comprehensive Plan, page 14.

B. Land Division Chapter. All of the requirements for land divisions, as applicable shall be met (Chapter 14.43);

Currently, the Village Green development site consists of two parcels created by a partition. Shown on Assessor Map 20-03-27-20, Tax Lot 3700 consists of about 9.65 acres and was developed with the main hotel building, a maintenance building, caretaker residence, 9 single-story hotel buildings with guest rooms, and the RV Park. Tax Lot 3701 consists of a 6.5-acre garden with a pool and hot tub, walking trails, and the site for the relocated train depot.

The Village Green Subdivision Preliminary Plat application will create a legal lot specifically for the Pine Springs Apartments (lot 3). Please refer to the subdivision application for findings demonstrating compliance with the Land Division Chapter.

C. Chapter 2 and Chapter 3 Standards. All of the land use, development, and design standards contained in Chapters 2 and 3 are met, except as may be modified in Section 14.45.130;

Based on the findings below, all of the applicable land use, development, and design standards in Chapters 2 and 3 are met.

The property is zoned C-T Commercial Tourist. As shown on <u>Sheet LA-1 Conceptual</u> <u>Site Plan</u>, a portion of the area on the Row River Corridor will continue to be available for Tourist Oriented Retail Sales and Services.

Per Table 14.23.110, Tourist Commercial Retail Sales and Service uses are permitted outright in the C-T zone. Examples of these uses include a hotel, coffee shop and financial services. Drive-Up Uses are also permitted subject to a Conditional Use and special standards. Per Table 14.23.110, multiple family residential use is permitted through an approved Master Plan.

Table 1 below lists standards from Table 14.23.120 Commercial Development Standards, Section 14.23.150 Building Orientation and Commercial Block Layout, and 14.23.170 Commercial Districts – Architectural Design Standards.

Subject	Standards for C-T Zone	Proposed	Complies
Minimum Lot Area	None	NA	NA
Minimum Lot. Width – Nonresidential Uses	50 ft	Lot Widths in Excess of 50 ft	YES

Maximum Building Height	40 ft (slopes less than 15%)	Leasing Office @15 feet Apt Bldgs @ 25 feet	YES
Fences, Retaining / Garden Walls	Maximum 7 ft	No new fencing proposed at this time	YES
Maximum Bldg Coverage	50%	About 20%	YES
Minimum Landscape Area (% of Site Area)	15% - 1.19 Acres May include plant and non-plant areas per Section 14.32.300(D)	Common Open Space is at least 15% - 1.19 Acres Additional Open Space Area 2.57 acres	YES YES
Minimum Setbacks	O ft	All Apt Bldgs Setback Minimum of 20 feet from Highway and Row River Road.	YES
Build-To Line	60 ft, may be increased per Section 14.23.170	Buildings are within 60 ft of Row River except where setback increased due to stormwater pond or separated by other lots.	YES
Building Orientation Section 14.23.150.C	At least one primary entrance facing the street	Primary entrances for the apartments are oriented internally towards open space and direct connections to sidewalks.	YES
	Parking placed to avoid adverse impacts to pedestrians	Parking is conveniently located and designed to avoid conflicts with pedestrians	

	Motor vehicle areas between the primary entrance and the street limited to one 24 ft driveway with parking bays. If development contains multiple buildings with insufficient street frontage, primary entrance may be oriented to common green space.	No motor vehicle areas are located between the apartment buildings and Row River Road. Apartment entrances are conveniently located and face landscape beds or common green space.	
Pedestrian Orientation Section 14.23.170.B	Building design support a safe and attractive pedestrian environment. Corner building entrances within 20 feet of street corner 40% of Bldg Front Façade at Build-to Line or Closer Ground floor windows / displays on at least 40% of street- facing elevations Primary building entrances designed with weather protection	Buildings are oriented in a manner that creates a safe and attractive pedestrian environment. There are no buildings located on the corner of two public streets. The apartments contain ample windows on the ground floor suitable for residential use. The primary building entrances provide weather protection for residents.	YES
Building Compatibility Section 14.23.170.C	New buildings and major remodels designed consistent with architectural context for area.	There is no dominant architectural scheme in the vicinity of the site. The two-story apartment buildings will be compatible for the setting.	YES

Human Scale Section 14.23.170.D	All Buildings are designed to be a human-scale.	The two-story apartment buildings and one-story leasing office will be human- scale.	YES

14.31.200 Vehicle Access and Circulation

The subject property is located on the east side of I-5 and adjacent to the interchange at Row River Corridor. The site currently has two driveways onto Row River Corridor. The Master Plan proposes to retain both driveways. The north driveway will be improved to add a center left turn lane for vehicles exiting the site onto Row River Corridor. The intersection design will also be widened to align better with Jim Wright Way.

No new motor vehicle accesses are being requested.

In compliance with Section 14.31.200.L, driveway connections to public street will conform with city design standards. In compliance with Section 14.31.200.M, fire access lanes at least 20' wide are provided as shown on the Village Green Subdivision <u>Sheet C-2.0 Easement Plan</u>. In compliance with Section 14.31.200.O, no visual obstructions will be placed in required vision clearance areas.

14.31.300 Pedestrian Access and Circulation

Pedestrian circulation is provided throughout the development including sidewalk connections between primary building entrances and the adjacent street. The sidewalks also connect to on-site parking areas, the leasing office, open space, and common areas.

All sidewalks will be a minimum of 5 feet wide, raised 6 inches and protected from motor vehicle areas by a curb. All sidewalks will comply with ADA requirements with accessible ramps provided where the sidewalks intersect a driveway or street.

See Sheet LA-1 Site Plan and Sheet LA-2 Preliminary Landscape Master Plan.

14.32.200 Landscape Conservation

The site does not contain any identified Statewide Goal 5 Natural Resources. The site does not contain any known streams, wetlands or other protected natural resource areas. The site is not subject to the provisions in Chapter 14.37 – Sensitive Lands.

14.32.300 Landscaping

The site is zoned C-T Commercial Tourist. According to 14.32.300.C.4, the minimum percent of required landscaping in the C-T district is 15% of the site. This is consistent with the requirements for open space for Master Planned Developments at 14.45.150.E Open Space.

The Pine Springs Master Plan contains 7.92 acres. The minimum required open space is 7.92 X 15% or 1.19 acres. Per the provisions related to Master Plans, the proposed open space shall be dedicated to the city or leased to a legal entity. To meet this standard, the Master Plan will lease Common Open Space Areas A, B, C, and D as shown on <u>Sheet LA-1 Site Plan</u>. The Common Open Space areas have a total of 1.20 acres exceeding the minimum required. All Common Open Space areas will be attractively landscaped as shown on Sheet <u>LA-2 Preliminary Landscape Master Plan</u>.

In addition to Common Open Space areas, additional landscaping is proposed in all yards and parking areas. The landscape areas are dispersed throughout the development and designed to comply with city Landscape Design Standards. See <u>Sheet LA-2 Preliminary Landscape Master Plan</u>.

14.32.400 Street Trees

The applicant intends to comply with street tree requirements. To the extent practicable, new street trees on Row River will be spaced on average 30 feet on center and will be located outside utility easements. The proposed trees are shown on <u>Sheet LA-2 Preliminary Landscape Master Plan</u>.

14.32.500 Fences and Walls

No new fencing is proposed at this time. If fencing is proposed at a future date, the applicant agrees to install fencing within the maximum allowed height of seven (7) feet.

14.33.300 Automobile Parking Standards

Per *Table 14.33.300.A - Minimum Required Parking by Use* the quantity required and provided is below:

Multifamily 1.5 spaces/unit per 2-bedroom unit 121 units = 182 required parking spaces Proposed Standard Spaces: 227 Proposed ADA Spaces: 8 Total Proposed = 235 parking spaces – 1.9 spaces per unit

The applicant intends to comply with city parking stall standards and requirements for accessible parking.

14.33.400 Bicycle Parking Standxards

Per Table 14.33.400, minimum required bicycle parking and the number of spaces being provided is listed below:

Multifamily 1 per 4 units (long-term) / 30 required / 61 provided 1 per 20 units (short-term) / 6 required / 6 provided

The location, design, and lighting for bicycle parking will be done in compliance with city standards. Each ground floor apartment unit and the on-site manager's dwelling contain a storage closet accessed from the outdoor patio that provides one long-term bike parking space. The six short-term spaces will be located at the leasing office at the south end of the site and near Building 10 at the north end of the site. See <u>Sheet LA-1</u> <u>Site Plan</u> for the location of short-term bike parking. See <u>Sheet A3.1 8-plex</u> and <u>Sheet A3.1 Leasing Unit</u> for the ground floor storage closets.

14.34.100 Transportation Standards

The Village Green Subdivision creates 5 new lots. Lots 1, 4, and 5 will have frontage along a public street. Due to access restrictions on Row River Corridor, all lots will share use of a main driveway entrance at the intersection with Jim Wright Way. All lots will also have access to a shared access easement to the second existing driveway on Row River Corridor.

As shown on the Village Green Subdivision <u>Sheet C-2.0 Easement Plan</u>, private shared access easements will provide for motor vehicle, pedestrian, and emergency access circulation within the development site.

Historic development patterns restrict the ability and prevent the need to extend public streets within the development site. The location of I-5 along the west side of the property, Walmart along the south side and Row River Road along the north and east result in the inability to provide public street connections and create a traditional block pattern. Due to this situation, the Master Plan provides shared access easements and provides adequate circulation between various uses.

14.34.200 Public Use Areas

The Master Plan does not propose the dedication of any public use areas. Common Open Space areas will be leased to a separate legal entity.

14.34.300 Sanitary Sewer and Water Service Improvements

As shown on <u>Sheet C-2.0 Utility Plan</u>, sanitary sewers and water mains will be installed to serve the development in accordance with the City's Sanitary Sewer Master Plan, Water System Master Plan, and application construction specifications. The current sanitary sewer line crossing through the site to the hotel parcel (Lot 1 in the Village

Green Subdivision) will be vacated and removed and a new line installed outside of Lot 3.

14.34.400 Storm Drainage Improvements

As shown on <u>Sheet C-2.0 Utility Plan</u>, adequate provisions will be provided for storm water and flood water runoff according to the City's Storm Drainage Master Plan and Chapter 14.35, Surface Water Management. The project includes three stormwater detention and water quality treatment areas. The stormwater management plan is based on the geotechnical site investigation and the calculation of the development impacts. See <u>Exhibit H – Stormwater Report</u>, <u>Sheet LA-1 Site Plan</u>, <u>Sheet LA-2</u> <u>Preliminary Landscape Master Plan</u>, and <u>Sheet C-3.2 Storm Facility Details</u>.

14.34.500 Utilities

All new utility lines will be placed underground, except for surface mounted transformers, surface mounted connection boxes and meter cabinets. See <u>Sheet C-2.0</u> <u>Utility Plan</u>.

14.34.600 Easements

The Village Green Subdivision <u>Sheet C-2.0 Easement Plan</u> shows the general location and type of easements to be granted prior to approval of the Final Plat.

D. Chapter 4 Standards. Master plans that involve the creation of new parcels shall meet the standards established in Section 14.43 Land Divisions. Conditional uses within master plans shall comply with the criteria found in Chapter 14.44.400A.

The Village Green Subdivision application will create a new legal lot for the Pines Springs Apartments. The subdivision will be reviewed by the city for compliance with standards in Section 14.43 Land Divisions. The boundary of the Pines Springs Master Plan is the same as the proposed boundary of Lot 3 of the Village Green Subdivision. The Pine Springs Master Plan will not create any new parcels therefore this approval criterion is not applicable.

E. Open Space. Master plans shall contain a minimum of 15 percent open space. Public open space shall be integral to the master plan. Plans shall emphasize public gathering places such as plazas, neighborhood parks, trails, and other publicly accessible spaces that integrate land use and transportation and contribute toward a sense of place. Where public or common private open space is designated, the following standards apply:

1. The open space area shall be shown on the final plan and recorded with the final plat or separate instrument; and

2. The open space shall be conveyed in accordance with one of the following methods:

a. By dedication to the City as publicly owned and maintained open space. Open space proposed for dedication to the City must be acceptable to the City with regard to the size, shape, location, improvement, environmental condition (i.e., the applicant may be required to provide a level one environmental assessment), and budgetary and maintenance abilities;

b. By leasing or conveying title (including beneficial ownership) to a corporation, home association or other legal entity, with the City retaining the development rights to the property. The terms of such lease or other instrument of conveyance must include provisions (e.g., maintenance, property tax payment, etc.) suitable to the City.

The Master Plan identifies long-term open space areas for the use and enjoyment of apartment residents and guests. These privately owned open space areas will be leased to a separate legal entity and maintained by the property owner. Upon approval of the Detailed Development Plan, the final drawings will restrict the future use of the areas designated as Common Open Space.

The Common Open Space areas will be attractively landscaped and provide passive recreational amenities. At the request of city staff, the Common Open Space areas will not include any of the larger stormwater ponds intended to exclusively serve stormwater management from the apartments.

See Sheet LA-1 Site Plan and Sheet LA-2 Preliminary Landscape Master Plan.

View of hotel courtyard with existing, privately-owned, plaza and fountain on the proposed Lot 1 of the Village Green Subdivision.

View of hotel courtyard with existing privately-owned, open green space and gazebo on the proposed Lot 1 of the Village Green Subdivision.

3. The open space shall meet the following minimum design standards:

a. Master plans shall contain open space that equal or exceeding 15 percent of the site area. The site area is defined as the lot or parcel on which the development to be located, after subtracting any required dedication of street right-of-way and other land for public purposes (e.g., public park or school grounds, etc.);

The Master Plan contains a total of about 1.20 acres of Common Open Space or about 15% of the Pine Springs site. There is about 2.62 acres of additional open space bringing the total amount of open space to about 3.82 acres or about 48% of the site area.

b. In meeting the common open space standard, the master plan shall contain one or more of the following: outdoor recreation area, protection of sensitive lands (e.g., trees preserved), play fields, outdoor playgrounds, outdoor dining areas, walking fitness courses, pedestrian amenities, or similar open space amenities for residents and/or employees. Sensitive lands such as prominent ridgelines, floodways or wetlands shall be considered of highest importance and shall be designated for protection as open space;

The Master Plan contains a variety of pedestrian amenities in the areas designated as Common Open Space. In addition, the Common Open Space areas contribute to the preservation of significant trees and shrubs. See <u>Sheet LA-2 Preliminary Landscape</u> <u>Master Plan</u>.

c. Historic buildings or landmarks that are open to the public may count toward meeting the open space requirements when approved by the planning commission;

The Pine Springs Master Plan site does not contain any Statewide Goal 5 historic or cultural resources nor any locally designated historic buildings or landmarks.

The Village Green site does provide a home for the relocated Village Green Depot building at the southwest corner of the property. At this time, there are no plans to relocate the depot. The Village Green Depot will be included in Lot 2 of the Village Green Subdivision and may be adapted for the use by the RV Park residents.

According to Kate Vaughn with the Historical Society, "The depot building at the Village Green was constructed to be the ticket office and gift shop for the Oregon, pacific and Eastern's Blue Goose excursion train. The train ran from 1971 until 1988. The journey started at the depot and ran up the Row River Valley to Culp Creek."

View of Depot Building at the Village Green on proposed Lot 2 of the Village Green Subdivision.

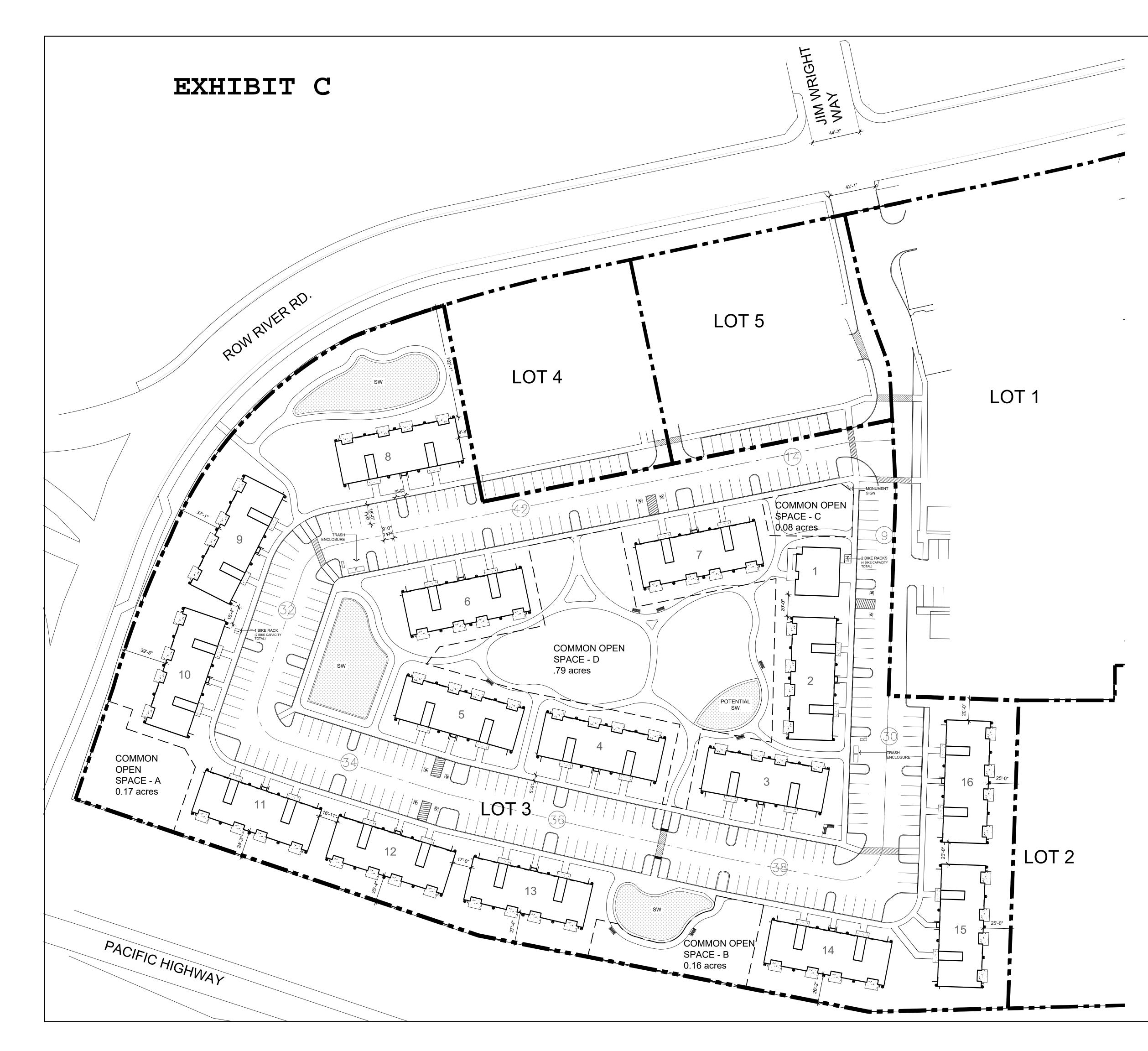
d. To receive credit under Section 14.45.150.D, a common open space area shall have an average width that is not less than 20 feet and an average length that is not less than 20 feet. (Ord. 2959 §5(Exhibit A (part)), 2007. Formerly 4.5.150)

All areas shown on the Master Plan as Common Open Space have an average width and average depth greater than 20 feet.

PART VIII. – CONCLUSION

The Pine Springs Master Plan application provides evidence demonstrating compliance with the applicable approval criteria.

If there are questions, please contact Teresa Bishow at 541-514-1029 or via e-mail at teresa@bishowconsulting.com.


Sincerely,

Teresa Bíshow

Teresa Bishow, AICP

END OF WRITTEN STATEMENT

SITE DATA

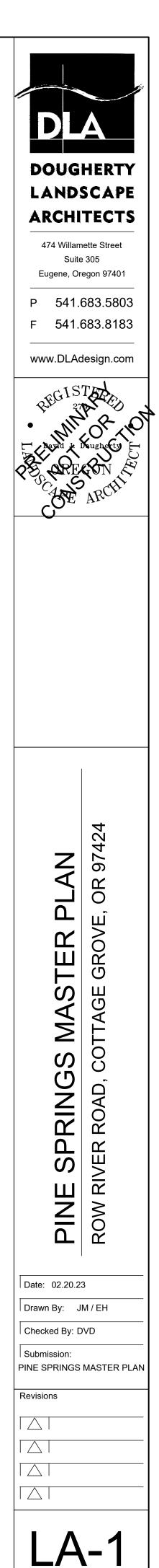
ZONING: CT COMMERCIAL TOURIST

PINE SPRINGS AT VILLAGE GREEN UNITS: 121 AREA: 7.92 ACRES DENSITY: 15.3 UNITS PER ACRE

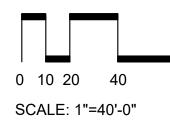
> VEHICLE PARKING REQUIRED: 1.5 SPACES/2-BDRM UNIT 1.5 X 121 = 181.5 PROPOSED: STANDARD: 227 SPACES ADA: 8 SPACES TOTAL: 235 = 1.9 PER UNIT

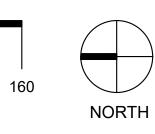
PARKING AREA LANDSCAPING TOTAL PARKING AREA SURFACE (TPAS) = 79,805 SF REQUIRED: 10% 10% X 79,805 SF = 7,981 SF PROPOSED: 8,066 SF

CANOPY TREES REQUIRED: 1 PER 3000 SF OF TPAS 79,805/3000 = 27 TREES PROPOSED: 44 TREES

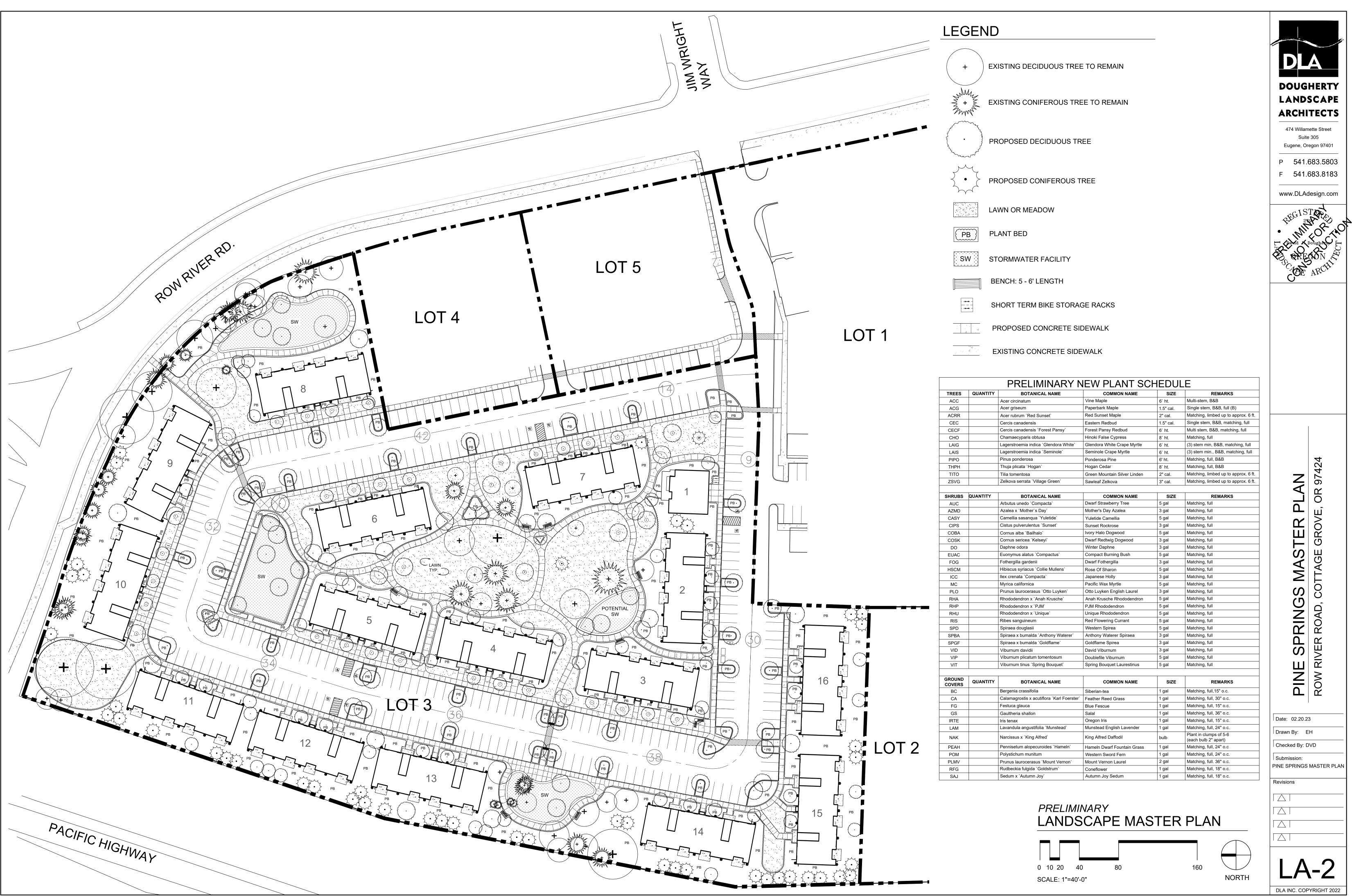

BICYCLE PARKING REQUIRED: 1 PER 4 UNITS (LONG TERM) = 30 1 PER 20 UNITS (SHORT TERM) = 6

PROPOSED: LONG TERM = 61 (GROUND FLOOR UNITS STORAGE RM) SHORT TERM = 6

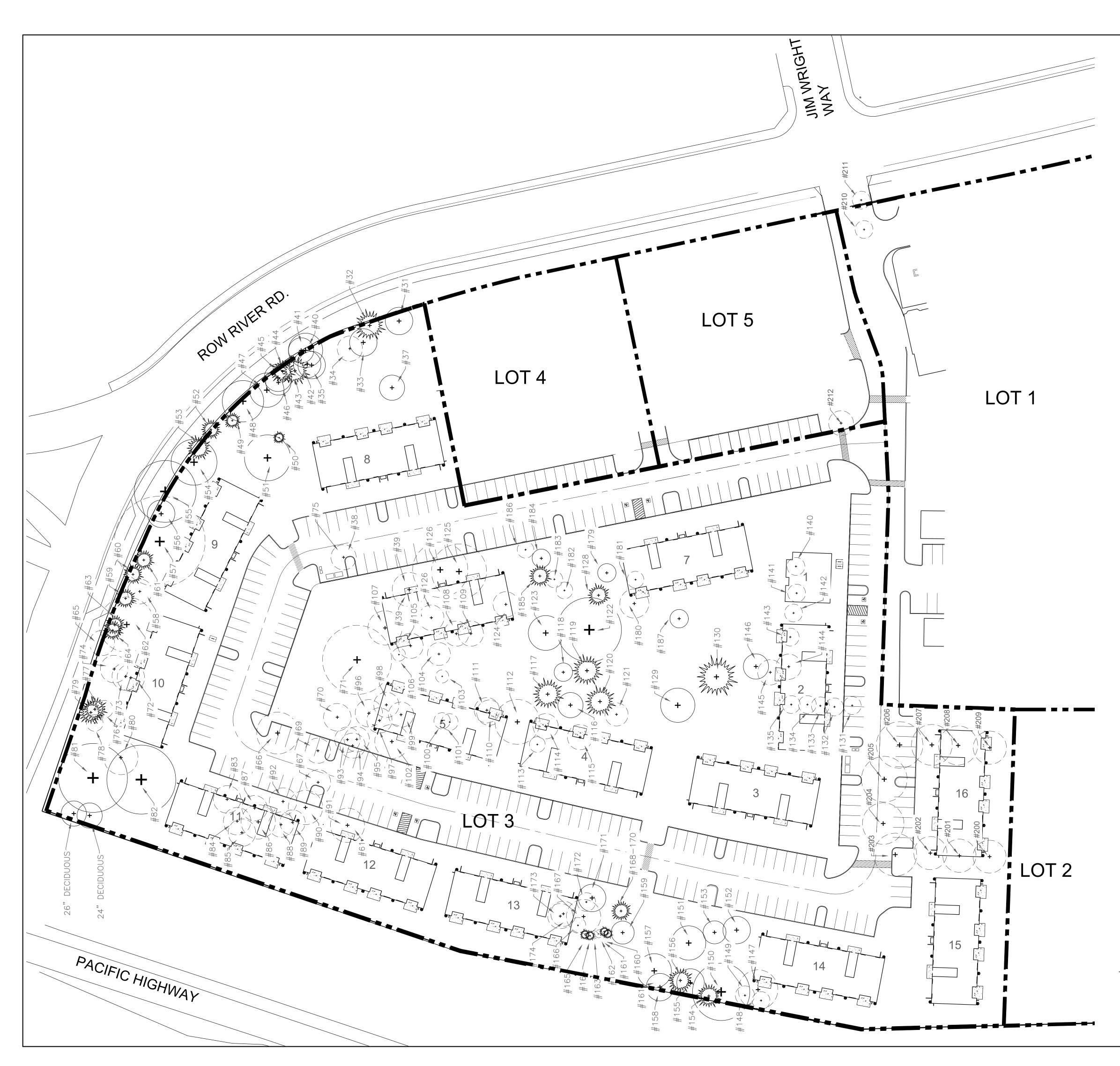

COMMON OPEN SPACE REQUIRED: 15% 15% X 7.92 ACRES = 1.19 ACRES PROPOSED: 1.20 ACRES

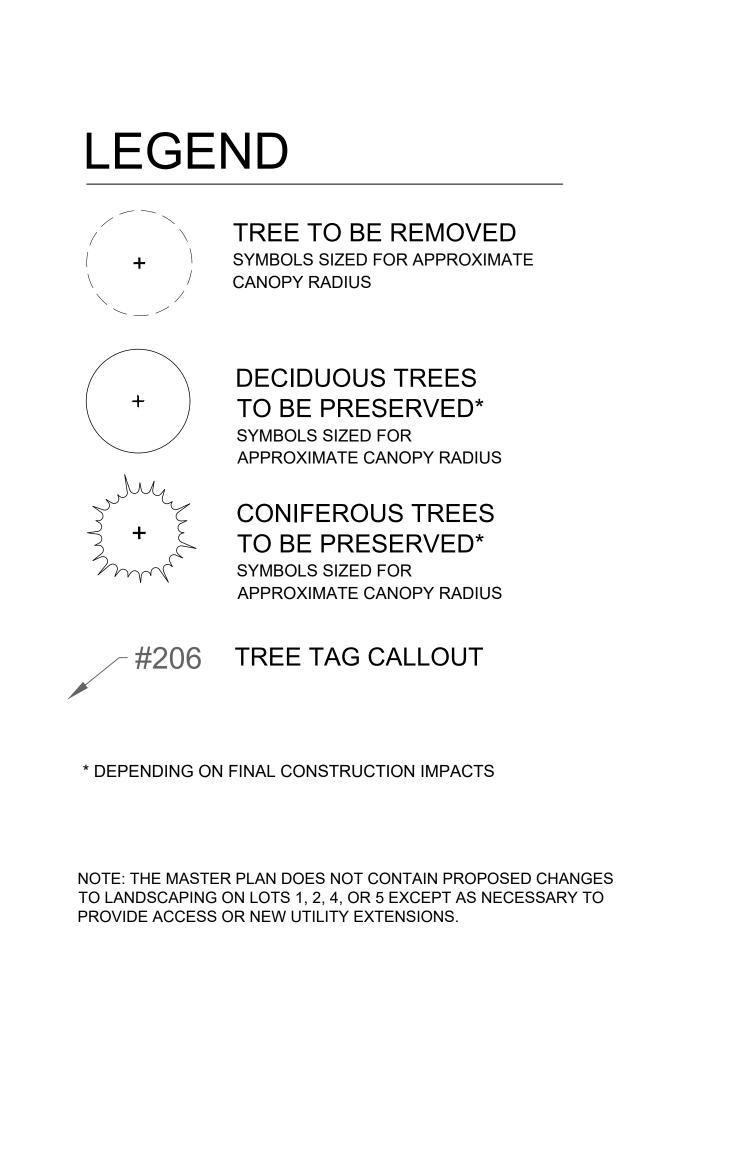

OTHER OPEN SPACE PROPOSED: 2.62 ACRES

LOT BUILDING COVERAGE MAXIMUM: 50% 50% X 350,076 = 175,038 SF PROPOSED: 66,358 SF (20%)



Sľ	TF	ΡI		V
			_/ \I	N


DLA INC. COPYRIGHT 2021



TREES	QUANTITY	BOTANICAL NAME	COMMON NAME	SIZE	REMARKS
ACC		Acer circinatum	Vine Maple	6` ht.	Multi-stem, B&B
ACG		Acer griseum	Paperbark Maple	1.5" cal.	Single stem, B&B, full (B)
ACRR		Acer rubrum `Red Sunset`	Red Sunset Maple	2" cal.	Matching, limbed up to approx. 6 ft.
CEC		Cercis canadensis	Eastern Redbud	1.5" cal.	Single stem, B&B, matching, full
CECF		Cercis canadensis `Forest Pansy`	Forest Pansy Redbud	6` ht.	Multi stem, B&B, matching, full
СНО		Chamaecyparis obtusa	Hinoki False Cypress	8` ht.	Matching, full
LAIG		Lagerstroemia indica `Glendora White`	Glendora White Crape Myrtle	6` ht.	(3) stem min, B&B, matching, full
LAIS		Lagerstroemia indica `Seminole`	Seminole Crape Myrtle	6` ht.	(3) stem min., B&B, matching, full
PIPO		Pinus ponderosa	Ponderosa Pine	6' ht.	Matching, full, B&B
THPH		Thuja plicata `Hogan`	Hogan Cedar	8` ht.	Matching, full, B&B
TITO		Tilia tomentosa	Green Mountain Silver Linden	2" cal.	Matching, limbed up to approx. 6 ft.
ZSVG		Zelkova serrata `Village Green`	Sawleaf Zelkova	3" cal.	Matching, limbed up to approx. 6 ft.
					•

SHRUBS	QUANTITY	BOTANICAL NAME	COMMON NAME	SIZE	REMARKS
AUC		Arbutus unedo `Compacta`	Dwarf Strawberry Tree	5 gal	Matching, full
AZMD		Azalea x `Mother`s Day`	Mother's Day Azalea	3 gal	Matching, full
CASY		Camellia sasanqua `Yuletide`	Yuletide Camellia	5 gal	Matching, full
CIPS		Cistus pulverulentus `Sunset`	Sunset Rockrose	3 gal	Matching, full
COBA		Cornus alba `Bailhalo`	Ivory Halo Dogwood	5 gal	Matching, full
COSK		Cornus sericea `Kelseyi`	Dwarf Redtwig Dogwood	3 gal	Matching, full
DO		Daphne odora	Winter Daphne	3 gal	Matching, full
EUAC		Euonymus alatus `Compactus`	Compact Burning Bush	5 gal	Matching, full
FOG		Fothergilla gardenii	Dwarf Fothergilla	3 gal	Matching, full
HSCM		Hibiscus syriacus `Collie Mullens`	Rose Of Sharon	5 gal	Matching, full
ICC		Ilex crenata `Compacta`	Japanese Holly	3 gal	Matching, full
MC		Myrica californica	Pacific Wax Myrtle	5 gal	Matching, full
PLO		Prunus laurocerasus `Otto Luyken`	Otto Luyken English Laurel	3 gal	Matching, full
RHA		Rhododendron x `Anah Krusche`	Anah Krusche Rhododendron	5 gal	Matching, full
RHP		Rhododendron x `PJM`	PJM Rhododendron	5 gal	Matching, full
RHU		Rhododendron x `Unique`	Unique Rhododendron	5 gal	Matching, full
RIS		Ribes sanguineum	Red Flowering Currant	5 gal	Matching, full
SPD		Spiraea douglasii	Western Spirea	5 gal	Matching, full
SPBA		Spiraea x bumalda `Anthony Waterer`	Anthony Waterer Spiraea	3 gal	Matching, full
SPGF		Spiraea x bumalda `Goldflame`	Goldflame Spirea	3 gal	Matching, full
VID		Viburnum davidii	David Viburnum	3 gal	Matching, full
VIP		Viburnum plicatum tomentosum	Doublefile Viburnum	5 gal	Matching, full
VIT		Viburnum tinus `Spring Bouquet`	Spring Bouquet Laurestinus	5 gal	Matching, full
GROUND COVERS	QUANTITY	BOTANICAL NAME	COMMON NAME	SIZE	REMARKS

Bergenia crassifolia		Siberian-tea	1 gal	Matching, full,15" o.c.
	Calamagrostis x acutiflora `Karl Foerster`	Feather Reed Grass	1 gal	Matching, full, 30" o.c.
	Festuca glauca	Blue Fescue	1 gal	Matching, full, 15" o.c.
	Gaultheria shallon	Salal	1 gal	Matching, full, 36" o.c.
	Iris tenax	Oregon Iris	1 gal	Matching, full, 15" o.c.
	Lavandula angustifolia `Munstead`	Munstead English Lavender	1 gal	Matching, full, 24" o.c.
	Narcissus x `King Alfred`	King Alfred Daffodil	bulb	Plant in clumps of 5-6 (each bulb 2" apart)
	Pennisetum alopecuroides `Hameln`	Hameln Dwarf Fountain Grass	1 gal	Matching, full, 24" o.c
	Polystichum munitum	Western Sword Fern	1 gal	Matching, full, 24" o.c.
	Prunus laurocerasus `Mount Vernon`	Mount Vernon Laurel	2 gal	Matching, full. 36" o.c.
	Rudbeckia fulgida `Goldstrum`	Coneflower	1 gal	Matching, full, 18" o.c.
	Sedum x `Autumn Joy`	Autumn Joy Sedum	1 gal	Matching, full, 18" o.c.
		Calamagrostis x acutiflora `Karl Foerster` Festuca glauca Gaultheria shallon Iris tenax Lavandula angustifolia `Munstead` Narcissus x `King Alfred` Pennisetum alopecuroides `Hameln` Polystichum munitum Prunus laurocerasus `Mount Vernon` Rudbeckia fulgida `Goldstrum`	Calamagrostis x acutiflora `Karl Foerster` Feather Reed Grass Festuca glauca Blue Fescue Gaultheria shallon Salal Iris tenax Oregon Iris Lavandula angustifolia `Munstead` Munstead English Lavender Narcissus x `King Alfred` King Alfred Daffodil Pennisetum alopecuroides `Hameln` Hameln Dwarf Fountain Grass Polystichum munitum Western Sword Fern Prunus laurocerasus `Mount Vernon` Mount Vernon Laurel Rudbeckia fulgida `Goldstrum` Coneflower	Calamagrostis x acutiflora `Karl Foerster'Feather Reed Grass1 galFestuca glaucaBlue Fescue1 galGaultheria shallonSalal1 galIris tenaxOregon Iris1 galLavandula angustifolia `Munstead`Munstead English Lavender1 galNarcissus x `King Alfred`King Alfred DaffodilbulbPennisetum alopecuroides `Hameln`Hameln Dwarf Fountain Grass1 galPolystichum munitumWestern Sword Fern1 galPrunus laurocerasus `Mount Vernon`Mount Vernon Laurel2 galRudbeckia fulgida `Goldstrum`Coneflower1 gal

	PINE SPRINGS	725 ROW RIVER ROAD
Date:	02.20.23	3
Drawn	By: E	Н
Check	ed By: D	VD
Submis	ssion:	MASTER PLAN
	ssion: PRINGS	
PINE SF	ssion: PRINGS	

DI

DOUGHERTY

LANDSCAPE

ARCHITECTS

474 Willamette Street

P 541.683.5803

F 541.683.8183

www.DLAdesign.com

PEGISTED 279

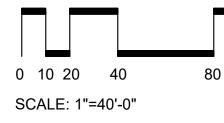
97424

OVE

C

Э

00


AN M

Ω

MASTER

Suite 305 Eugene, Oregon 97401

TREE PRESERVATION MAP

TREE INVENTORY TABLES

TREE SPECIES LEGEND

	Tree Codes		
C	Cherry		
Α	Ash		
AA	Tree of Heaven		
ABV	Arbovitae		
ACP	Japanese Maple		
AR	Red Maple		

В	Birch
BM	Big Leaf Maple
CA	Crab apple
CAG	Blue Atlas Cedar
CC	Choke Cherry
CD	Cedar

CJ	Katsura Tree
СР	Catalpa
CRW	Coast Redwood
F	Fig
G	Ginkgo
HL	Holy
	,

HRC	Hogan Red Cedar
HT	Hawthorn
JP	Juniper
JPG	Japanese Pagoda Tree
L	Laurel
М	Maple
-MS	Multi-stem

TREE STATUS LEGEND

P: To be preserved depending on final construction impacts R: To be removed depending on final construction impacts NA: Tree located outside of Pine Spring Master Plan project area

NA:	Iree	located	outside o	t Pine Spr	ing Ma
Tag #	Species	Size	Con/Dec	Condition	Status
1	PSM	10"	CONIFEROUS	Good	NA
2	CAG	14"	CONIFEROUS	Good	NA
3	CAG	15"	CONIFEROUS	Good	NA
4	PIPO	22"	CONIFEROUS	Good	NA
5	CAG	13"	CONIFEROUS	Good	NA
6	CAG	8"	CONIFEROUS	Good	Р
7	QR	24"	DECIDUOUS	Good	NA
8	QR	18"	DECIDUOUS	Good	NA
9	QR	22"	DECIDUOUS	Good	NA
10	QR	26"	DECIDUOUS	Good	NA
11	QR	26"	DECIDUOUS	Good	NA
12	QR	32"	DECIDUOUS	Good	NA
13	QR	34"	DECIDUOUS	Good	NA
14	QR	34"	DECIDUOUS	Good	NA
15	C	10"	DECIDUOUS	Good	NA
16	B	6"	DECIDUOUS	Poor/Dying	NA
17	C	14"	DECIDUOUS	Good	NA
18	s	7"	CONIFEROUS	Good	NA
19	WS	24"	DECIDUOUS	Good	NA
20	CD	15"	CONIFEROUS	Good	NA
20	CD	26"	CONIFEROUS	Good	NA
21	CD	13"	CONIFEROUS	Good	NA
	QR	38"			NA
23		_		Good	
24	PSM	13"	CONIFEROUS	Good	NA
25	ACP	5"	DECIDUOUS	Good	NA
26	PSM	10"	CONIFEROUS	Good	NA
27	QR	36"	DECIDUOUS	Good	NA
28	A	6"	DECIDUOUS	Good	NA
29	PIPO	18"	CONIFEROUS	Poor	NA
30	Α	24"	DECIDUOUS	Good	NA
31	QG	13"	DECIDUOUS	Good	Р
32	PIPO	15"	CONIFEROUS	Good	Р
33	QG	8"	DECIDUOUS	Good	Р
34	S	6"	CONIFEROUS	Poor	R
35	сс	12"	DECIDUOUS	Good	Р
36	A	10"	DECIDUOUS	Good	NA
37	A	27"	DECIDUOUS	Good	Р
38	PSM	17"	CONIFEROUS	Good	R
39	AA	24"	DECIDUOUS	Good	R
40	СС	10"	DECIDUOUS	Good	Р
41	СС	17"	DECIDUOUS	Good	Р
42	СС	7"	DECIDUOUS	Good	Р
43	S	8"	CONIFEROUS	Poor	Р
44	CD	11"	CONIFEROUS	Good	Р
45	С	7"	DECIDUOUS	Good	Р
46	HT	7"	DECIDUOUS	Good	Р
47	С	16"	DECIDUOUS	Good	Р
48	A	24"	DECIDUOUS	Good	Р
49	CD	9"	CONIFEROUS	Good	P
49 50	JP	5"	CONIFEROUS	Good	P
51	T	40"	DECIDUOUS	Good	P
52	PI	20"	CONIFEROUS	Fair	P
53	PSM	12"	CONIFEROUS	Good	P
		42"	DECIDUOUS	Good	P
54	BM	1 / /		1 1 1 1 1 1 1	

56	С	14"	DECIDUOUS	Good	F
57	QG	40"	DECIDUOUS	Good	F
58	JP	11"	CONIFEROUS	Good	F
59	WRC	12"	CONIFEROUS	Good	F
60	JP	12"	CONIFEROUS	Good	F
61	WRC	12"	CONIFEROUS	Good	F
62	BM	36"	DECIDUOUS	Good	F
63	L-MS	24"	CONIFEROUS	Good	F
64	L-MS	36"	CONIFEROUS	Good	F
65	A	6"	DECIDUOUS	Poor	F
66	CAG	30"	CONIFEROUS	Fair	F
67	A	26"	DECIDUOUS	Good	, ,
68	A	17"	DECIDUOUS	Good	F
	CRW	17			F
69			CONIFEROUS	Good	
70	L	12"	CONIFEROUS	Good	F
71	SYC	42"	DECIDUOUS	Good	F
72	C	30"	DECIDUOUS	Good	F
73	C	30"	DECIDUOUS	Good	F
74	A	9"	DECIDUOUS	Good	F
75	PSM	17"	CONIFEROUS	Good	F
76	L	6"	CONIFEROUS	Good	F
77	L	6"	CONIFEROUS	Good	F
78	L	5"	CONIFEROUS	Good	F
79	L	10"	CONIFEROUS	Good	F
80	BM	12"	DECIDUOUS	Good	F
81	QG	32"	DECIDUOUS	Good	F
82	QG	28"	DECIDUOUS	Good	F
83	ACP	6"	DECIDUOUS	Good	F
84	ACP	8"	DECIDUOUS	Good	F
85	ACP	8"	DECIDUOUS	Good	F
86	Т	13"	DECIDUOUS	Poor	F
87	С	18"	DECIDUOUS	Poor	F
88	A	7"	DECIDUOUS	Good	F
89	ACP	4"	DECIDUOUS	Good	F
90	С	12"	DECIDUOUS	Good	F
91	С	18"	DECIDUOUS	Good	F
92	А	12"	DECIDUOUS	Good	F
93	А	24"	DECIDUOUS	Good	F
94	А	12"	DECIDUOUS	Good	F
95	A	29"	DECIDUOUS	Good	F
96	С	12"	DECIDUOUS	Good	F
97	С	12"	DECIDUOUS	Good	F
98	С	15"	DECIDUOUS	Good	F
99	ACP	8"	DECIDUOUS	Good	F
100	PSM	16"	CONIFEROUS	Good	F
101	PSM	17"	CONIFEROUS	Good	F
102	ACP	28"	DECIDUOUS	Good	F
103	CD	10 "	CONIFEROUS	Fair	F
104	НТ	10"	DECIDUOUS	Good	F
105	RW	20"	CONIFEROUS	Good	F
106	CD	6"	CONIFEROUS	Good	F
107	С	7"	DECIDUOUS	Good	F
108	HT	9"	DECIDUOUS	Good	F
109	HT	12"	DECIDUOUS	Good	F
110	A		DECIDUOUS	Good	F
-					

112A40°DECIDUOUSGoodR113PSM6"CONIFEROUSGoodR114HT20"DECIDUOUSGoodR115M24"DECIDUOUSGoodP116C30"DECIDUOUSGoodP117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD10"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSGoodP122Q10"DECIDUOUSGoodP123Z10"DECIDUOUSGoodR124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodP128PI12"CONIFEROUSGoodR128PI12"CONIFEROUSGoodR139PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGood <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
1144HT20"DECIDUOUSGoodR115M24"DECIDUOUSGoodR116C30"DECIDUOUSGoodP117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSFoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSGoodR124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodR129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR133PSM12"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"<	112	А	40"	DECIDUOUS	Good	R
114HT20"DECIDUOUSGoodR115M24"DECIDUOUSGoodR116C30"DECIDUOUSGoodP117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSGoodR124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodR129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA	113	PSM	6"	CONIFEROUS	Good	R
115M24"DECIDUOUSGoodR116C30"DECIDUOUSGoodP117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSGoodR124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PH12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"CONIFEROUSGoodNA1314PSM24"CONIFEROUSGood <t< td=""><td></td><td>HT</td><td>20"</td><td></td><td></td><td></td></t<>		HT	20"			
116C30"DECIDUOUSGoodP117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodNA133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodNA135PSM24"CONIFEROUSGoodNA136AR5"<						
117CD10"CONIFEROUSGoodP118C12"DECIDUOUSGoodP119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSGoodR124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUUSGoodR127Z20"DECIDUUSGoodR128PI12"CONIFEROUSGoodP130PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA134CD20"CONIFEROUSGoodNA135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGood						
118C12"DECIDUOUSGoodP119CD15"CONIFROUSGoodP120CD14"CONIFROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUUSGoodR127Z20"DECIDUUSGoodR128PI12"CONIFEROUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR144CD20"CONIFEROUSGoodR144CD20"CONIFEROUSGoodR144CD20"CONIFEROUSGoodR144CD5"DECIDUOUSGood<						
119CD15"CONIFEROUSGoodP120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodR137AR5"DECIDUOUSGoodR138AR5"DECIDUOUSGoodR139G4"DECIDUOUSGo						
120CD14"CONIFEROUSGoodP121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSPoorR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR134PSM24"CONIFEROUSGoodNA135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
121CD10"DECIDUOUSPoorR122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSPoorR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodR141CD20"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGoodR144QG5"DECIDUOUSGood<						
122QG54"DECIDUOUSGoodP123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSPoorR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR126Z20"DECIDUOUSGoodR127Z20"DECIDUOUSGoodP128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM20"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodR144CD20"CONIFEROUSGoodR144CD20"CONIFEROUSGoodR144CD20"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGo						
123Z10"DECIDUOUSExcellentP124AA24"DECIDUOUSPoorR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodR130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodR137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR						
124AA24"DECIDUOUSPoorR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"CONIFEROUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGood						
125SYC12"DECIDUOUSGoodR125SYC12"DECIDUOUSGoodR126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodP128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"CONIFEROUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGood <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
126Z10"DECIDUOUSGoodR127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM24"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR143PS4"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
127Z20"DECIDUOUSGoodR128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137ARS"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR						
128PI12"CONIFEROUSGoodP129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR<						
129JPG17"DECIDUOUSGoodP130PSM24"CONIFEROUSGoodR131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR148PI18"CONIFEROUSGoodR149CD7"CONIFEROUSGoodR145F9"DECIDUOUSGoodP150SYC17"DECIDUOUSGood<			-			
130PSM24"CONIFEROUSGoodP131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR149CD7"CONIFEROUSGoodR149CD7"DECIDUOUSGoodP						
131PSM24"CONIFEROUSGoodR132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG5"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR149CD7"DECIDUOUSGoodR </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
132PSM20"CONIFEROUSGoodR133PSM17"CONIFEROUSGoodR134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodNA136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodR140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR144QG7"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR148PI18"CONIFEROUSGoodR <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
133 PSM 17" CONIFEROUS Good R 134 PSM 24" CONIFEROUS Good R 135 PSM 24" CONIFEROUS Good R 136 AR 5" DECIDUOUS Good NA 137 AR 5" DECIDUOUS Good NA 138 AR 5" DECIDUOUS Good NA 138 AR 5" DECIDUOUS Good NA 139 G 4" DECIDUOUS Good NA 140 CD 24" CONIFEROUS Good R 141 CD 20" CONIFEROUS Good R 144 QG 5" DECIDUOUS Poor R 143 CD 6" CONIFEROUS Good R 144 QG 5" DECIDUOUS Poor R 144 QG 5" CONIFEROUS						
134PSM24"CONIFEROUSGoodR135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR144QG5"CONIFEROUSGoodR144QG5"CONIFEROUSGoodR144QG7"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSGoodR149CD7"DECIDUOUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
135PSM24"CONIFEROUSGoodR136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR144QG5"DECIDUOUSGoodR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSGoodR149CD7"DECIDUOUSGoodR149F18"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
136AR5"DECIDUOUSGoodNA137AR5"DECIDUOUSGoodNA138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSPoorR144QG5"DECIDUOUSPoorR144QG5"CONIFEROUSGoodR144QG7"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR148PI18"CONIFEROUSGoodR149CD7"DECIDUOUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
137ARS"DECIDUOUSGoodNA138ARS"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
138AR5"DECIDUOUSGoodNA139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSGoodR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSGoodR149CD7"DECIDUOUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
139G4"DECIDUOUSGoodNA140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodTRB142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSPoorR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"DECIDUOUSGoodP150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
140CD24"CONIFEROUSGoodR141CD20"CONIFEROUSGoodTRB141CD24"CONIFEROUSGoodR142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSPoorR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodR147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
141CD20"CONIFEROUSGoodTRB142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSPoorR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"DECIDUOUSGoodP150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
142CD24"CONIFEROUSGoodR143CD6"CONIFEROUSPoorR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"DECIDUOUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP						
143CD6"CONIFEROUSPoorR144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"DECIDUOUSGoodP150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP					Good	
144QG5"DECIDUOUSPoorR145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	142	CD			Good	R
145CD5"CONIFEROUSGoodR146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP		CD	-	CONIFEROUS	Poor	
146QG7"DECIDUOUSGoodP147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	144	QG		DECIDUOUS	Poor	R
147PSM12"CONIFEROUSGoodR148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	145	CD		CONIFEROUS	Good	
148PI18"CONIFEROUSDeadR149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	146	QG	7"	DECIDUOUS	Good	Р
149CD7"CONIFEROUSGoodR150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	147	PSM	12"	CONIFEROUS	Good	R
150SYC17"DECIDUOUSGoodP151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	148	PI		CONIFEROUS	Dead	R
151B17"DECIDUOUSGoodP152F9"DECIDUOUSGoodP	149	CD	7"	CONIFEROUS	Good	R
152 F 9" DECIDUOUS Good P	150	SYC	17"	DECIDUOUS	Good	Р
	151	В		DECIDUOUS	Good	Р
			_			
	153	CA	6"	DECIDUOUS	Good	Р
154 HRC 22" CONIFEROUS Good P				CONIFEROUS	Good	
155 B 18" DECIDUOUS Good P	155	В		DECIDUOUS	Good	
156 PSM 24" CONIFEROUS Good P	156	PSM	24"	CONIFEROUS	Good	Р
157 QG 12" DECIDUOUS Good P	157	QG	12"	DECIDUOUS	Good	Р
158 PL 15" DECIDUOUS Good P	158	PL	15"	DECIDUOUS	Good	Р
159 C 12" DECIDUOUS Good P	159	С	12"	DECIDUOUS	Good	Р
160 ABV 24" CONIFEROUS Good P	160	ABV	24"	CONIFEROUS	Good	Р
161 ABV 14" CONIFEROUS Good P	161	ABV	14"	CONIFEROUS	Good	Р
162 ABV 12" CONIFEROUS Good R	162	ABV	12"	CONIFEROUS	Good	R
163 ABV 12" CONIFEROUS Good R	163	ABV	12"	CONIFEROUS	Good	R
164 ABV 12" CONIFEROUS Good P	164	ABV	12"	CONIFEROUS	Good	Р
165 ABV 12" CONIFEROUS Good P	165	ABV	12"	CONIFEROUS	Good	Р
166 CRW 16" CONIFEROUS Good R	166	CRW	16"	CONIFEROUS	Good	R
167 CP 7" DECIDUOUS Good R	167	СР	7"	DECIDUOUS	Good	R

Spruce

Sycamore

Tulip Tree

Zelkova

WRC Western Red Cedar

WS Weeping Spruce

S

SYC

Т

Ζ

Pine

Ponderosa Pine

Plum

Photinia

Doug Fir

Oregon White Oak

Red Oak

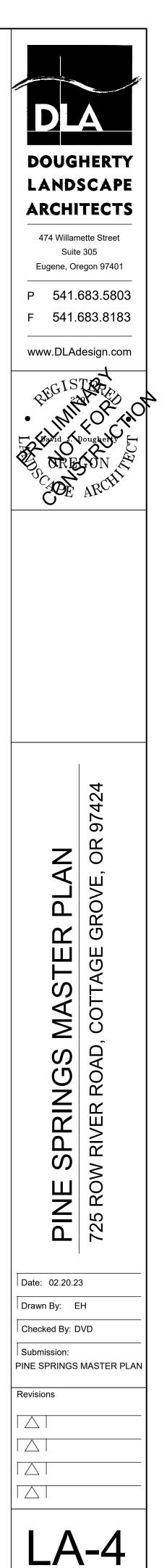
ΡI

PIPO

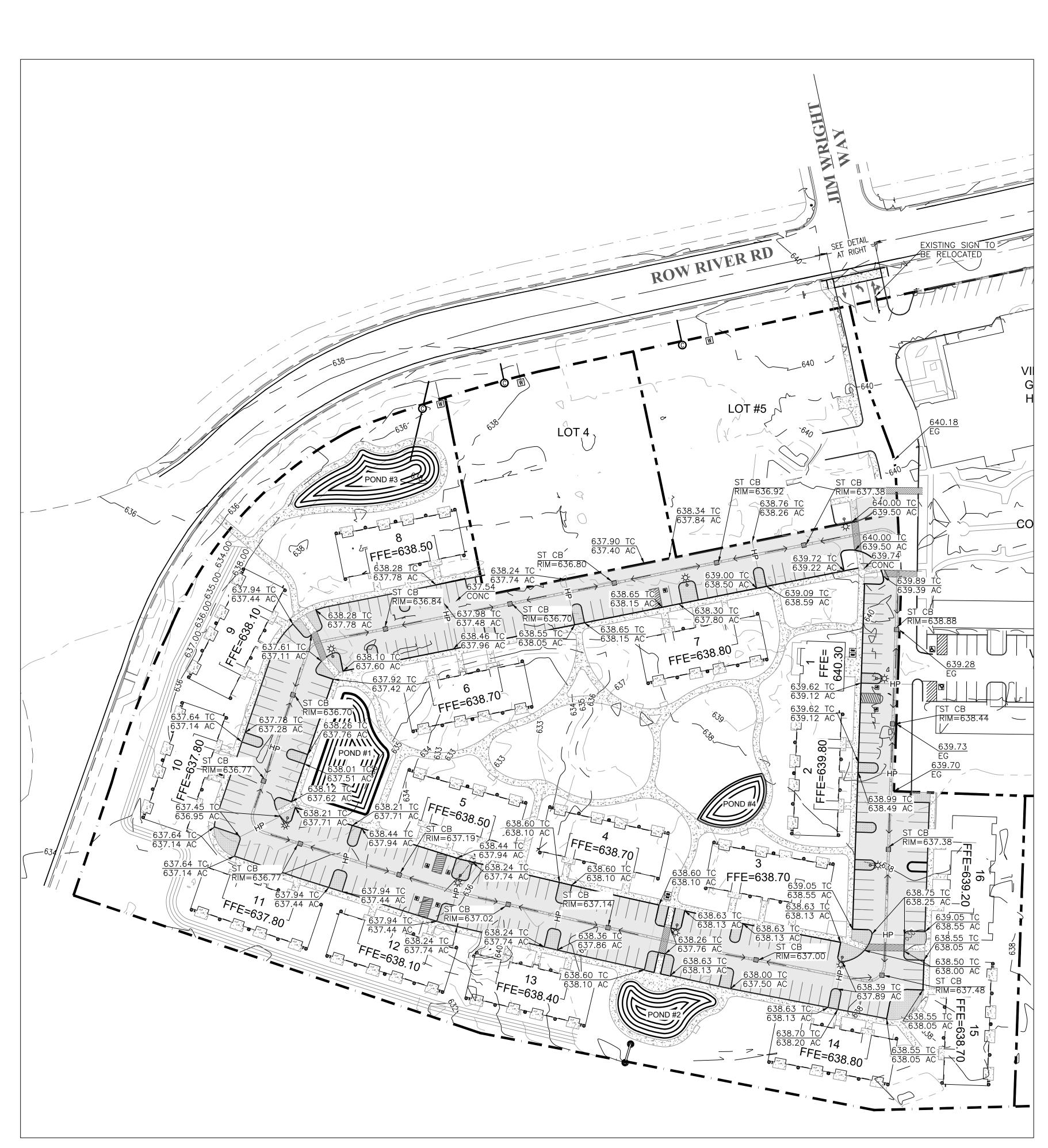
ΡL

PH

PSM


QG

QR


168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	

L	10"	CONIFEROUS	Good	Р
L	10"	CONIFEROUS	Good	Р
L	20"	CONIFEROUS	Good	Р
НТ	24"	DECIDUOUS	Good	Р
HL	4"	DECIDUOUS	Good	R
L	30"	CONIFEROUS	Good	R
L	10"	CONIFEROUS	Good	R
PSM	30"	CONIFEROUS	_	NA
PSM	30"	CONIFEROUS	Good	NA
PSM	22"	CONIFEROUS	Good	NA
PSM	21"	CONIFEROUS	Good	NA
PI	12"	DECIDUOUS	Poor	Р
РН	16"	DECIDUOUS	Poor	R
РН	8"	DECIDUOUS	Poor	R
CD-MS	14"	CONIFEROUS	Fair	R
CD	12"	CONIFEROUS	Fair	R
QG	10"	DECIDUOUS	Poor	Р
S	12"	CONIFEROUS	Poor	Р
Z	12"	DECIDUOUS		R
CD	10"	DECIDUOUS	Fair	Р
М	10"	DECIDUOUS	Good	R
М	11"	DECIDUOUS	Good	R
М	12"	DECIDUOUS	Good	R
М	12"	DECIDUOUS	Good	R
М	12"	DECIDUOUS	Good	R
М	14"	DECIDUOUS	Good	R
М	16"	DECIDUOUS	Good	R
М	18"	DECIDUOUS	Good	R
М	15"	DECIDUOUS	Good	R
М	15"	DECIDUOUS	Good	R
JP	15"	CONIFEROUS	Good	R
JP	15"	CONIFEROUS	Good	R
A	30"	DECIDUOUS	Good	R

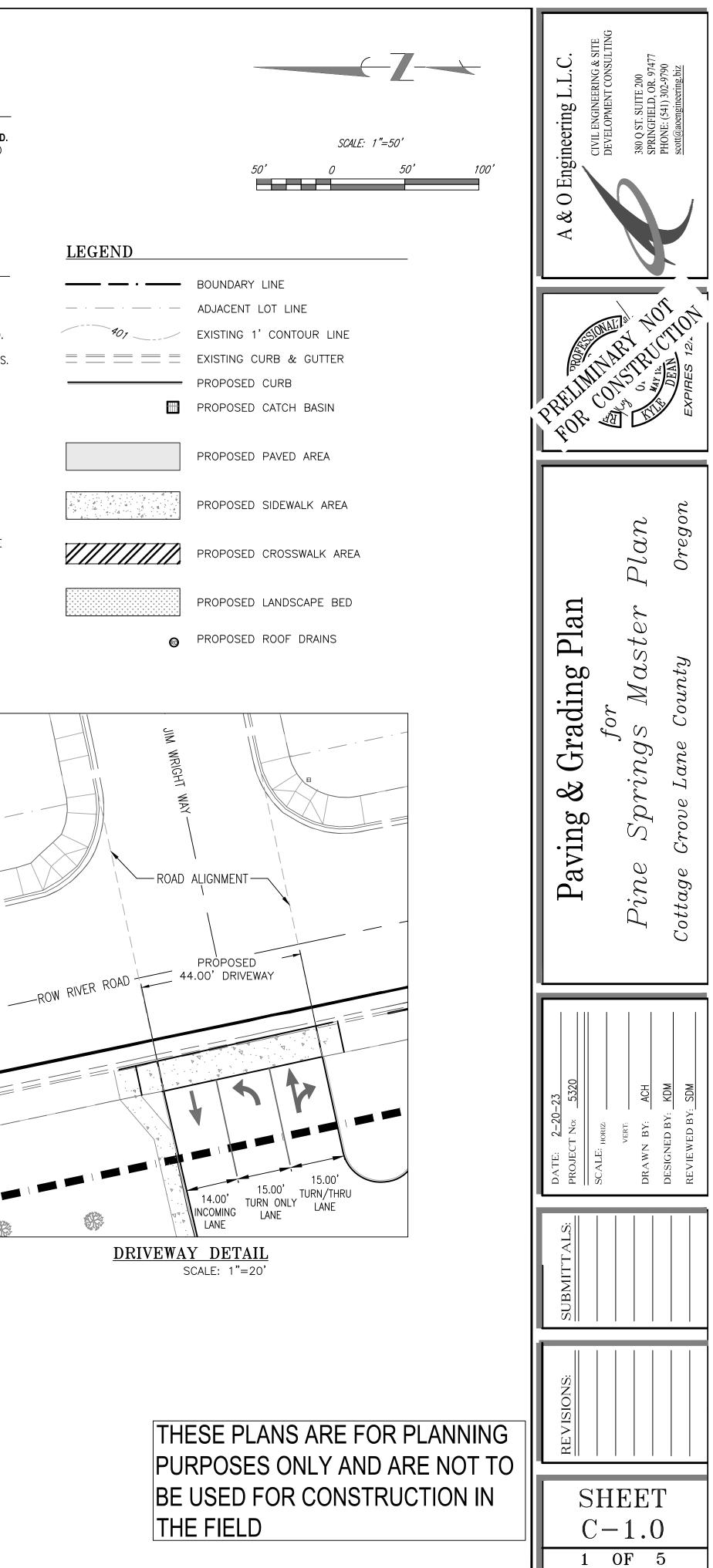
TREE PRESERVATION DATA

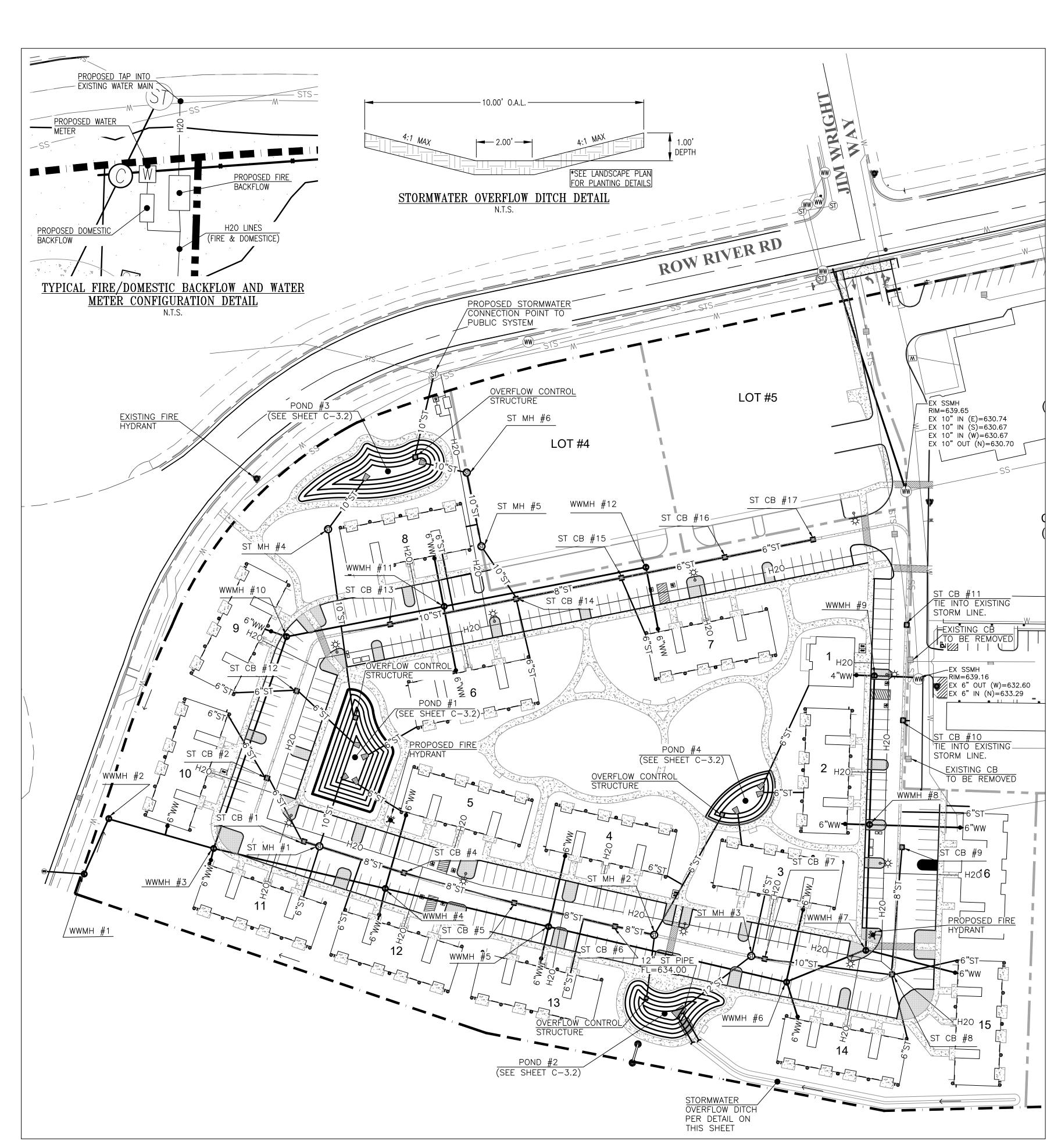
DLA INC. COPYRIGHT 2022

GENERAL NOTES:

- 1. THESE PLANS ARE INTENDED FOR DEVELOPMENT REVIEW PURPOSES, AND ARE NOT INTENDED TO BE USED FOR CONSTRUCTION IN THE FIELD.
- 2. VERTICAL ELEVATIONS AND CONTOURS BASED UPON DATA RETRIEVED BY I.E. ENGINEERING INC. AUGUST 2021.
- 3. AREAS NOT SHOWN AS IMPERVIOUS SURFACE TO BE LANDSCAPED.
- SEE LANDSCAPE ARCHITECT PLANS FOR DETAILS. 4. EXISTING GRADES ARE SHOWN AS CONTOURS ON GRADING PLAN.
- PROPOSED GRADES ARE CALLED OUT AS SPOT GRADES.

GRADING NOTES:


- 1. ADA PARKING SPACES AND ADJACENT ACCESSIBLE AISLES SHALL BE SLOPED LESS THAN 2% IN ALL DIRECTIONS.
- 2. ALL ADA FACILITIES TO MEET CURRENT ADOPTED REGULATION STANDARDS.
- ADA SPACES TO BE CONSTRUCTED PER DETAILS ON SHEET C-3.0.
 LANDSCAPE AREAS TO SLOPE AWAY FROM APARTMENT BUILDINGS. GRADING TO BE ESTABLISHED DURING BUILDING PERMIT PROCESS.
 CROSSWALKS TO BE MINIMUM 5.00' WIDE AND MEET ADA
- REGULATIONS.
 5. GRADING DESIGN TO BE COMPLETED AND FINALIZED DURING THE BUILDING PERMIT PROCESS.


PAVING NOTES:

- 1. ALL CONCRETE WALKWAYS TO MEET ADA REQUIREMENTS FOR
- SLOPE AND WIDTH. 2. ALL INTERIOR PAVED AREAS TO BE PRIVATELY OWNED AND
- MAINTAINED.
- 3. VALLEY GUTTERS TO BE SLOPED A MINIMUM OF 0.50% AND ROUTED TO CATCH BASINS.
- 4. PARKING SPACES AND CROSSWALKS TO BE STRIPED WITH 4" WIDE
- TRAFFIC WHITE STRIPE. 5. FOR PARKING SPACE DESIGN SEE DETAILS ON SHEET C-3.0

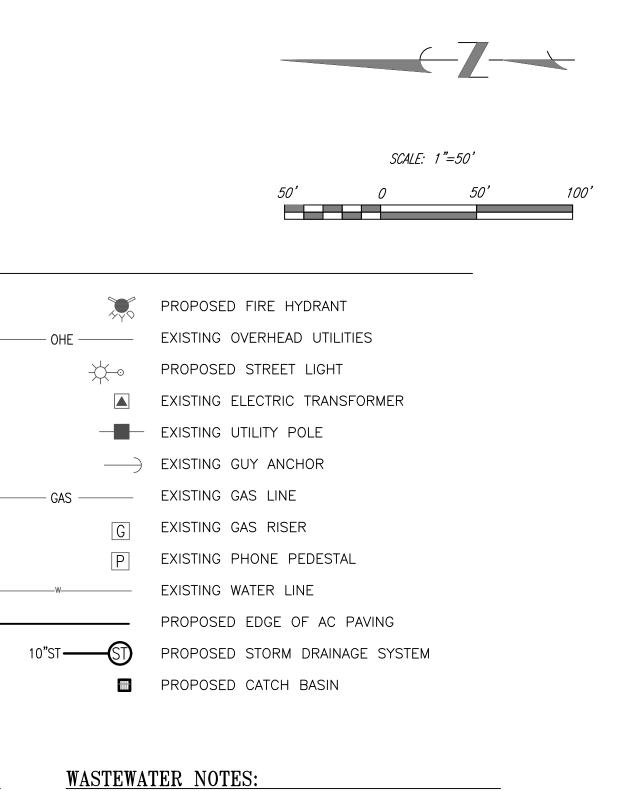
GRADING LEGEND

AC	ASPHALT
ADG	AREA DRAIN GRATE
BW	BACK OF WALK
CBG	CATCH BASIN GRATE
CONC	CONCRETE
EG	EXISTING GROUND
EX	EXISTING
FFE	FINISH FLOOR ELEVATION
FL	FLOWLINE
GB	GUTTER BAR
HP	HIGH POINT
TC	TOP OF CURB
TOB	TOP OF BANK
\leftarrow	DIRECTION OF FLOW
VG	VALLEY GUTTER

<u>LEGEND</u>

- — · ——	BOUNDARY LINE	
· ·	ADJACENT LOT LINE	
401	EXISTING 1' CONTOUR LINE	
= = = =	EXISTING CURB & GUTTER	
W	EXISTING WATER METER	
() ()	EXISTING FIRE HYDRANT	
	EXISTING WATER VALVE	
12"ST	EXISTING STORM DRAINAGE SYSTEM	
$\overline{\bigcirc}$	EXISTING CURB INLET	
	EXISTING CATCH BASIN	
12"ST(EXISTING STORMWATER CULVERT	
10"WW	EXISTING WASTEWATER SYSTEM	

STORMWATER NOTES:

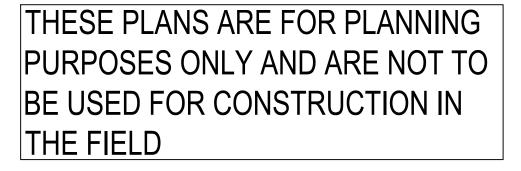

- ROOF DRAIN LOCATIONS FROM PROPOSED BUILDINGS TO BE FINALIZED DURING BUILDING PERMIT PROCESS. ALL ROOF DRAINS TO BE HARD PIPED TO MAINLINES. ROOF DRAINS SHOWN FOR REFERENCE ONLY. FOR DETAILS ON DETENTION PONDS REFER TO SHEET C-3.2.
- INFILTRATION TESTING WAS PERFORMED ON-SITE BY BRANCH ENGINEERING ON FEBRUARY 17, 2022. MEASURED RATES WERE FOUND TO BE BETWEEN 8 AND 66" PER HOUR DEPENDING ON TEST LOCATION. SEE GEOTECHNICAL REPORT FOR MORE INFORMATION.
- DUE TO INFILTRATION TEST RESULTS, INFILTRATION IS THE PRIMARY STORMWATER DISCHARGE ROUTE FROM THE PROPOSED STORMWATER PONDS. AN INFILTRATION RATE OF 2 INCHES PER HOUR THROUGH THE IMPORTED SOIL MEDIUMS WAS ASSUMED FOR DESIGN PROVIDING ADEQUATE SAFETY FACTOR FROM THE MEASURED INFILTRATION RATES.
- FOR LARGE DESIGN STORMS, AN OVERFLOW IS PROPOSED INTO THE EXISTING STORM MAIN ON THE WEST SIDE OF ROW RIVER ROAD AS SHOWN FROM POND #3.

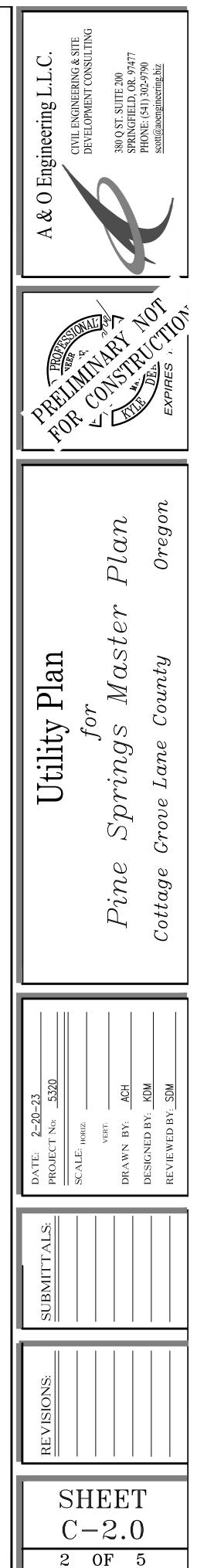
FRANCHISE UTILITY NOTES:

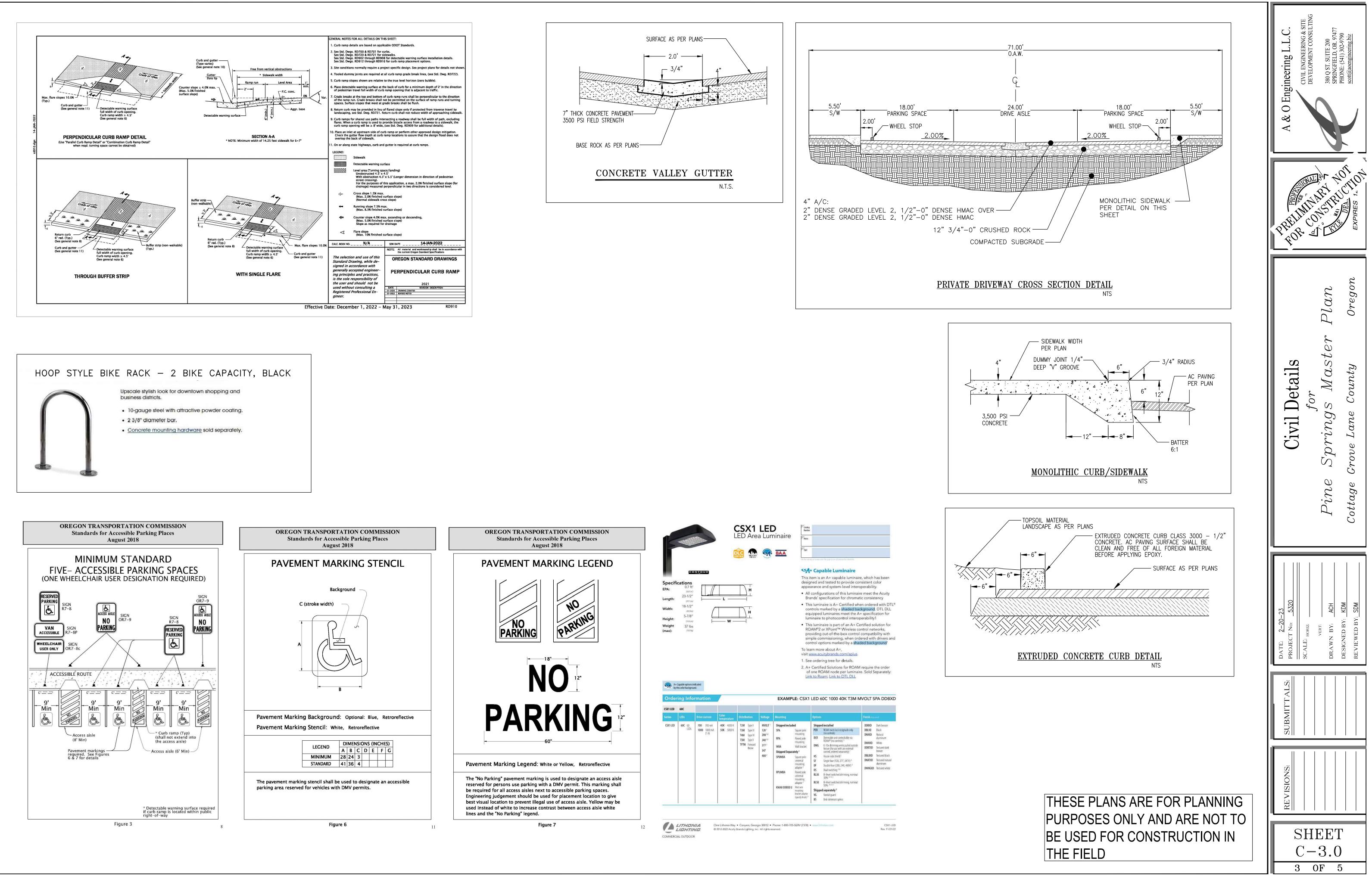
- I. ALL FRANCHISE UTILITIES (ELECTRIC, CABLE, PHONE, NATURAL GAS) ARE AVAILABLE TO THE SITE.
- 2. PROPOSED JOINT TRENCH ROUTING SHOWN FOR REFERENCE. FINAL DESIGN TO BE PROVIDED DURING BUILDING PERMIT PROCESS IN COORDINATION WITH PROVIDING UTILITY. JOINT TRENCH DETAIL SHOWN ON SHEET C-3.1.
- METER AND JUNCTION BOX LOCATIONS TO BE DETERMINED DURING BUILDING PERMIT PROCESS.
- 5. NEW FRANCHISE UTILITIES ON-SITE ARE PROPOSED TO BE UNDERGROUND.

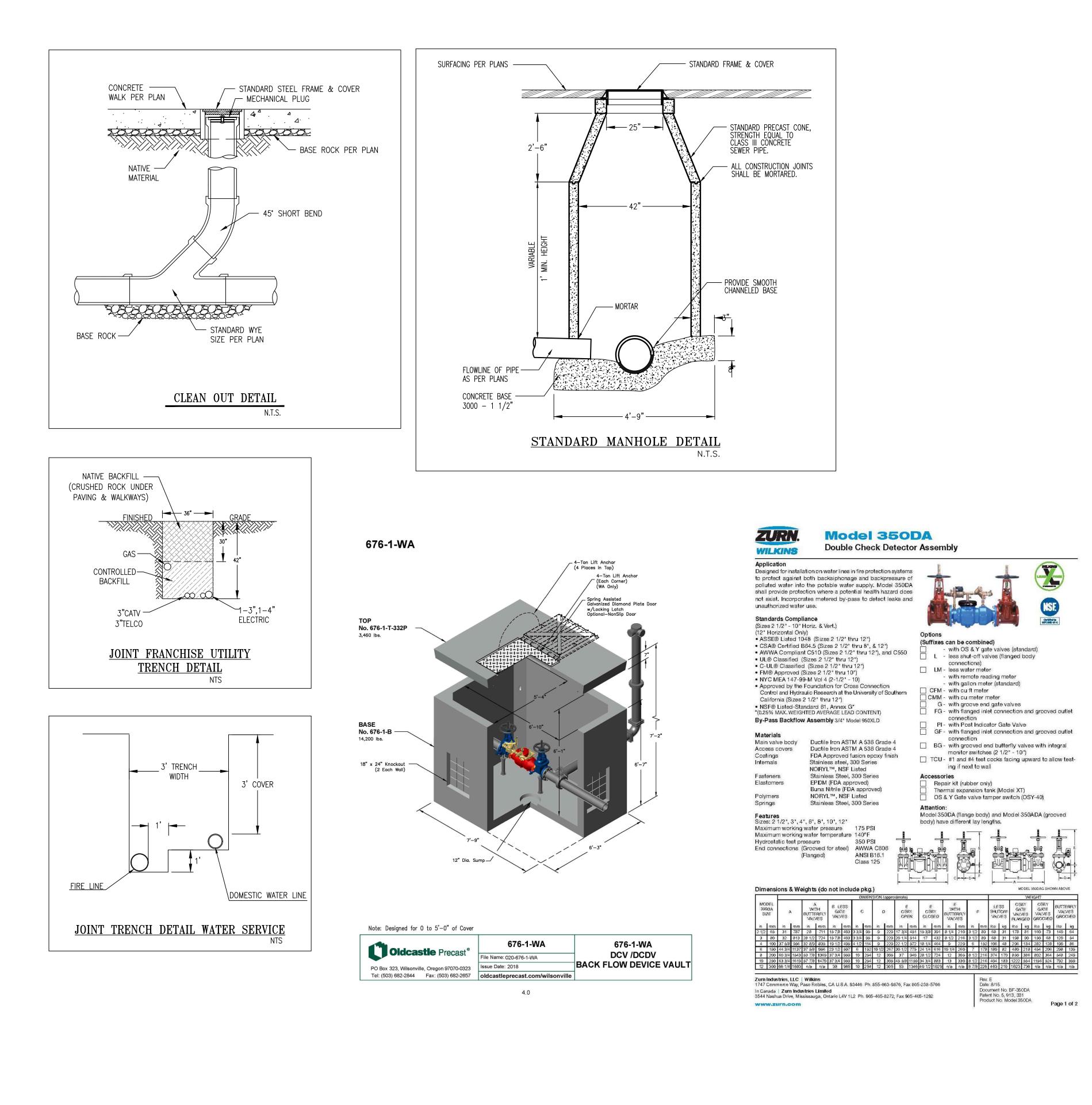
LIGHTING NOTES:

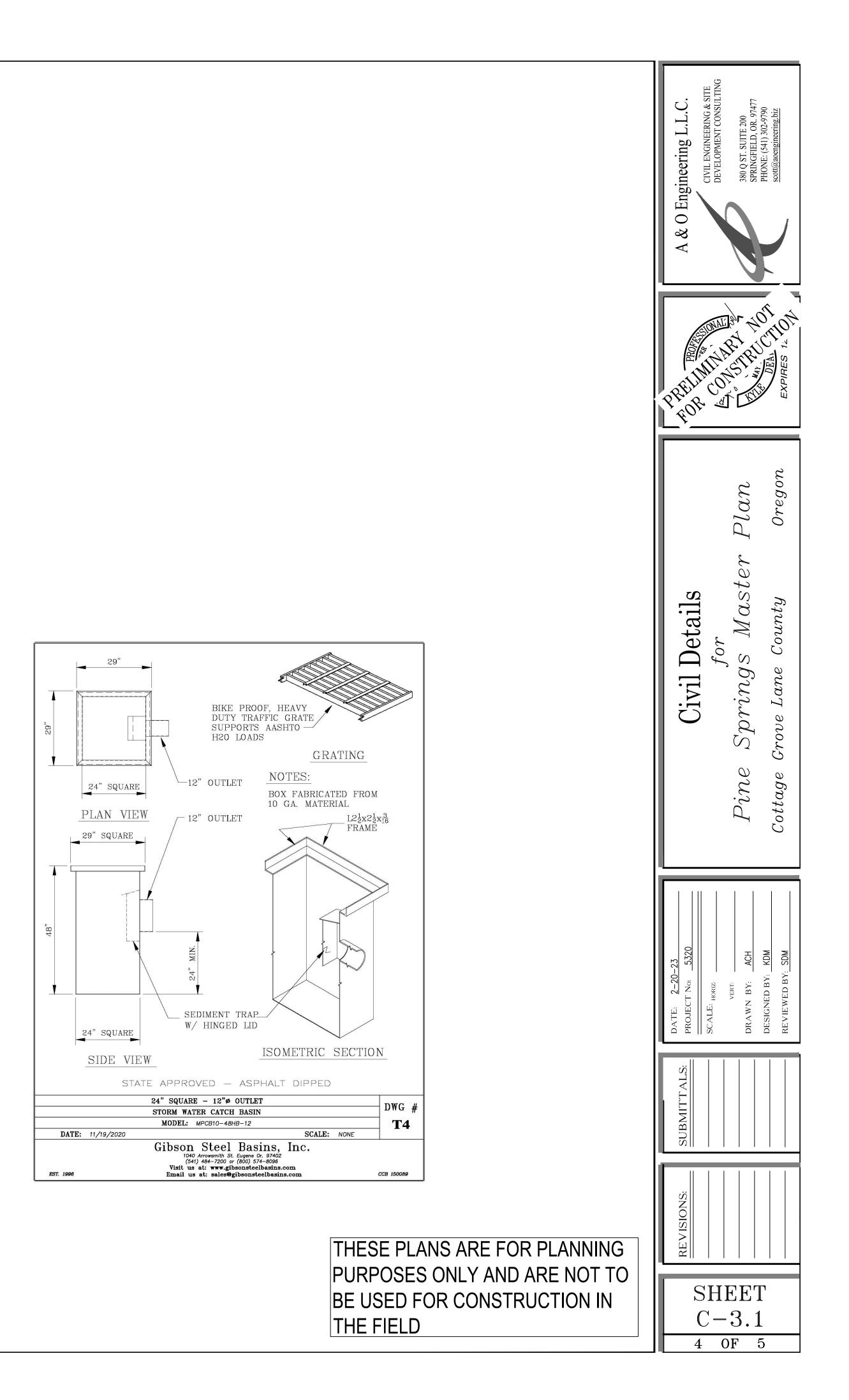
- WALL PACK LIGHTS (LED FIXTURES) TO BE INCLUDED ON BUILDINGS WHERE NECESSARY TO PROVIDE ADEQUATE LIGHTING. LOCATIONS TO BE DETERMINED DURING BUILDING PERMIT PROCESS.
- 2. POLE LIGHTS ARE PROPOSED AND PRELIMINARY LOCATIONS ARE SHOWN ON THIS SHEET. LIGHTS ARE PROPOSED TO BE CSX1 LEDS WITH A 20 FOOT MOUNTING HEIGHT ABOVE PAVEMENT.

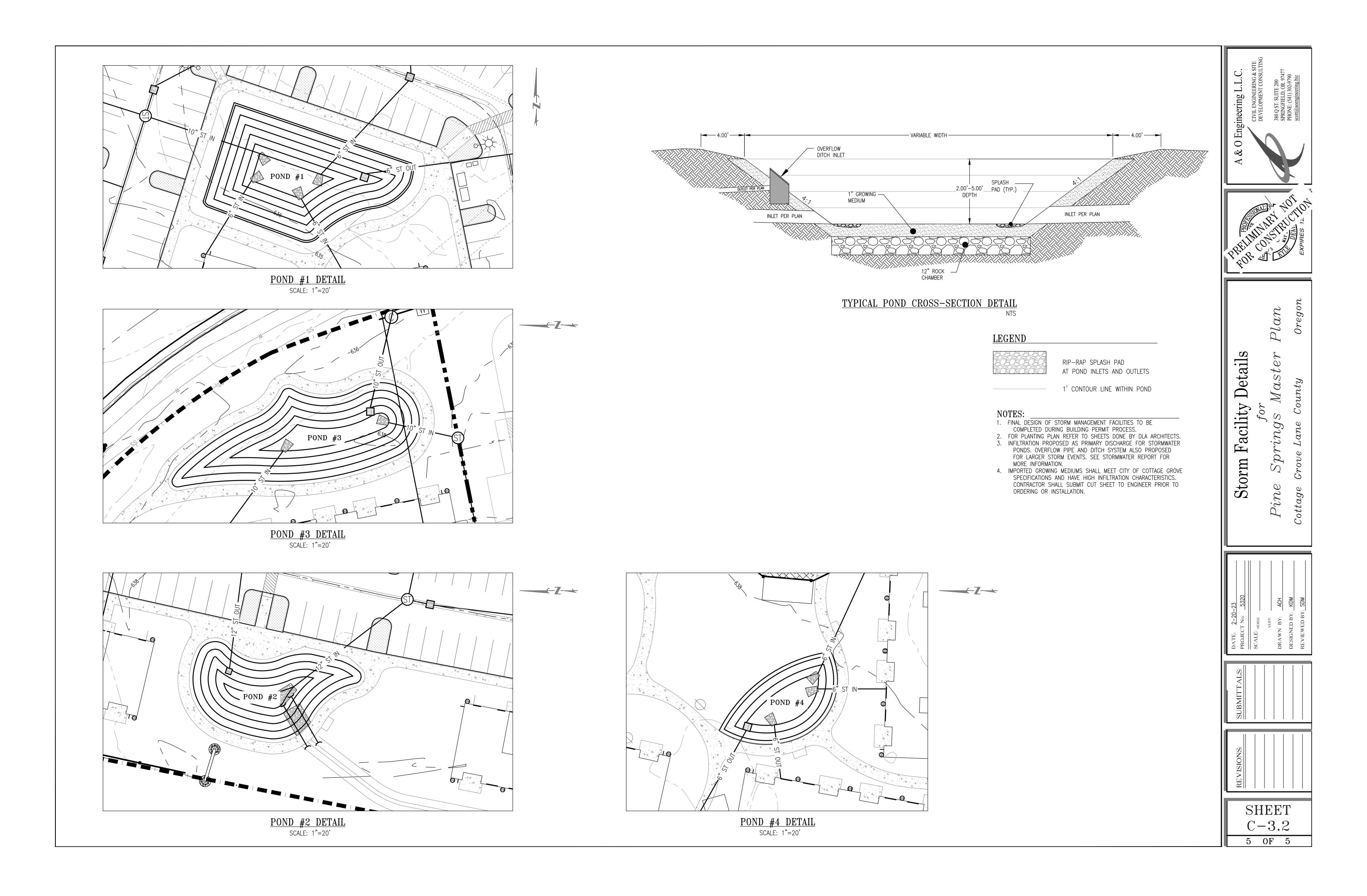


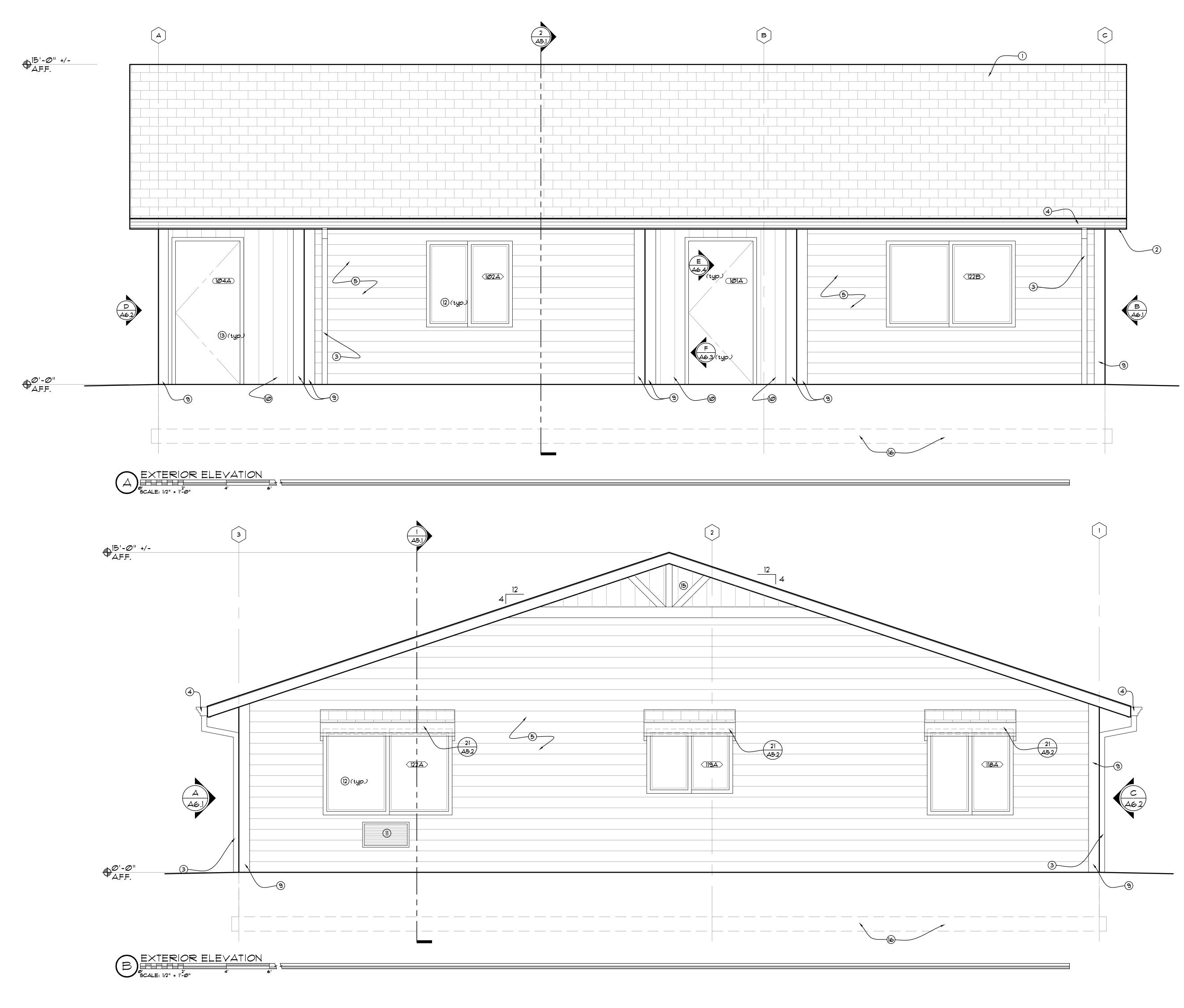

- 1. WASTEWATER SYSTEM INTERNAL TO SITE TO BE PRIVATELY OWNED
- AND MAINTAINED. 2. ALL WASTEWATER PIPING DESIGNED WITH MIN. 2.5 FEET OF COVER.
- PIPE MATERIAL TO BE PVC D3034 SDR 35. 3. WASTEWATER PIPING TO MEET REQUIREMENTS FOUND IN OREGON
- PLUMBING SPECIALTY CODE 2021.


WATER NOTES:


- 1. ALL BUILDINGS TO INCLUDE FIRE SPRINKLER SYSTEM. FIRE SPRINKLER SYSTEM TO BE DESIGNED BY QUALIFIED PROFESSIONAL DURING BUILDING PERMIT PROCESS.
- 2. INTERNAL HYDRANT PLACEMENT TO BE FINALIZED DURING BUILDING PERMIT PROCESS IN COORDINATION WITH COTTAGE GROVE FIRE MARSHALL. DOMESTIC WATER AND FIRE LINE SIZING CALCULATIONS TO BE
- COMPLETED AS PART OF BUILDING PERMIT PROCESS. COMPLETED AS FART OF BOILDING FERMIN PROCESS.
 DOMESTIC AND FIRE BACKFLOW DEVICES TO MEET CITY OF COTTAGE GROVE REQUIREMENTS.
 ALL PIPING SHALL MEET REQUIREMENTS IN OREGON STATE PLUMBING SPECIALTY CODE 2021.

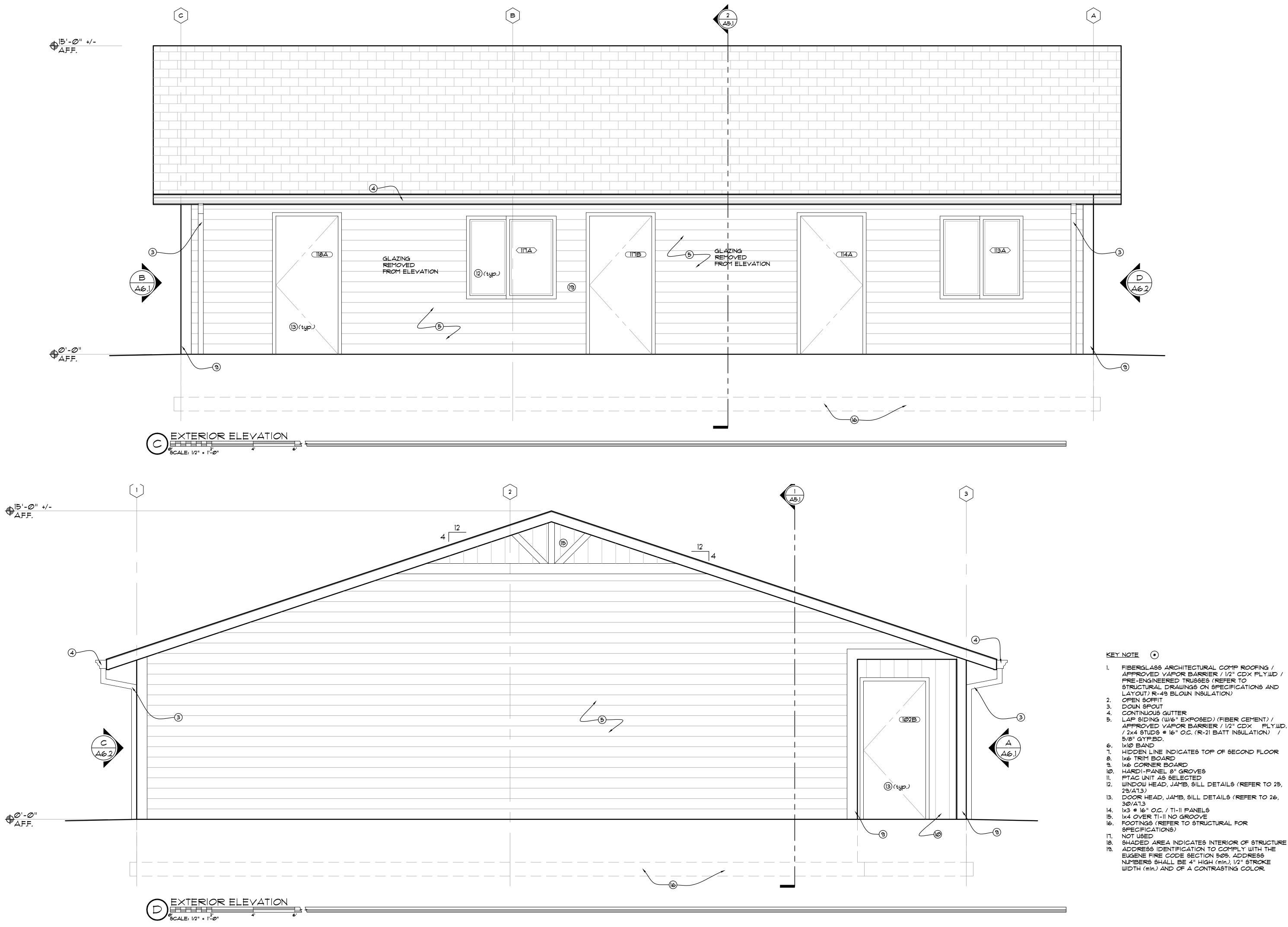

- 6. FIRE DEPARTMENT CONNECTIONS TO BE DESIGNED DURING BUILDING PERMIT PROCESS.
- 7. BOTH WATER AND FIRE LINES ARE PROPOSED TO BE PRIVATE LINES AND HAVE ONE POINT OF CONNECTION TO PUBLIC SERVICES.
- 8. DOMESTIC WATER LINES AND FIRE LINES ON-SITE ARE PROPOSED TO BE JOINT TRENCHED PER DETAIL ON SHEET C-3.1.





KEY NOTE

- 1. FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-49 BLOWN INSULATION) OPEN SOFFIT DOWN SPOUT
- 2.
- З. 4.
- CONTINUOUS GUTTER 5. LAP SIDING (W/6" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD.
 / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5/8" GYP.BD.
- 5/8" GTP.BD.
 6. IXIØ BAND
 7. HIDDEN LINE INDICATES TOP OF SECOND FLOOR
 8. IX6 TRIM BOARD
 9. IX6 CORNER BOARD
 10. HARDI-PANEL 8" GROVES
 11. PTAC UNIT AS SELECTED
 12. WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 29/413)


- 29/A7.3)
- 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26, 3Ø/A7.3 14. 1x3 @ 16" O.C. / TI-11 PANELS
- 15. 1x4 OVER TI-11 NO GROOVE 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)
- NOT USED 17,
- SHADED AREA INDICATES INTERIOR OF STRUCTURE 18. ADDRESS IDENTIFICATION TO COMPLY WITH THE EUGENE FIRE CODE SECTION 505. ADDRESS NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE 19, WIDTH (min.) AND OF A CONTRASTING COLOR.

Ŕ	EL-MNARY SEL-MORU SEL-NO RU SEL-NO RU SEL-NO RU	RON
AND D HEREIN RODD + AND WHOL OTHER WRITT	CUMENT AND T ESIGNS INCORF ARE THE PRO HANGEN, ARCHI IS NOT TO BE U E OR PART, FO PROJECT WITH EN AUTHORIZA HANGEN, ARCHI	PORATED PERTY OF TECT, LLC, JGED, IN DR ANY HOUT THE TION OF
RODD HANSEN, ARCH	1551 Oak Street Suite A Eugene, Oregon 91401 Phone: (541)-681-1800	Fax: (541)-681-1200 E-Mail: roddørharchitectural.com
PINE SPRINGS MASTER PLAN	BRENT LANZ	125 ROW RIVER ROAD COTTAGE GROVE, OREGON 91424

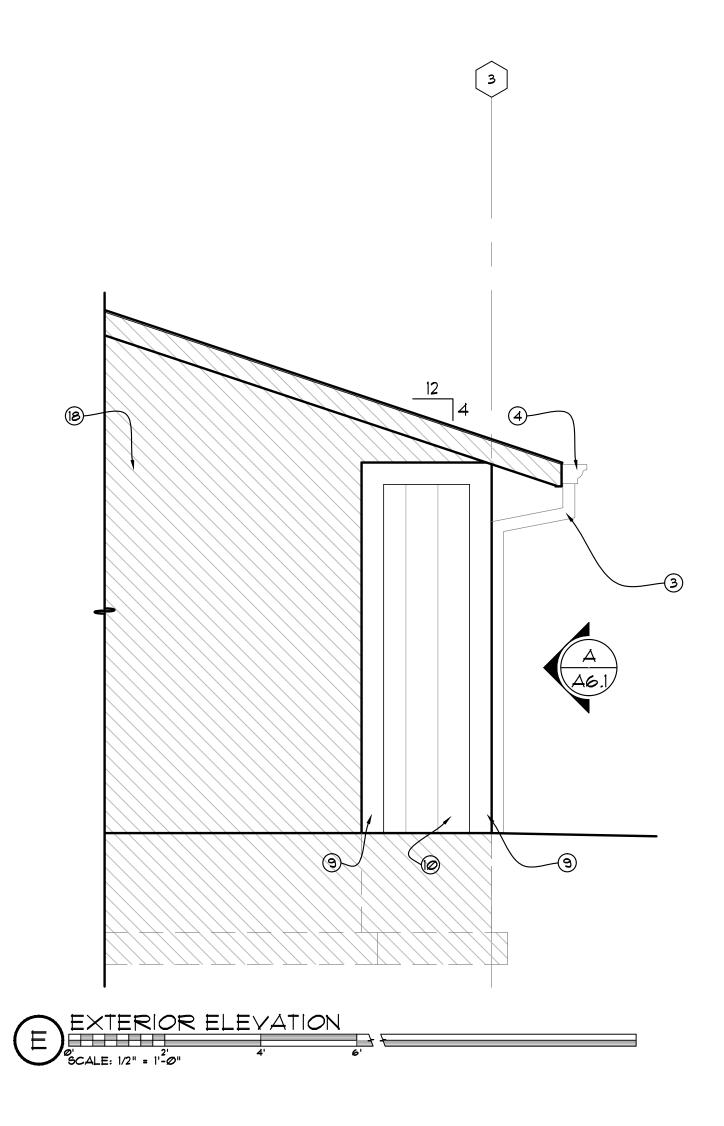
EXTERIOR TITLE: ELEVATIONS

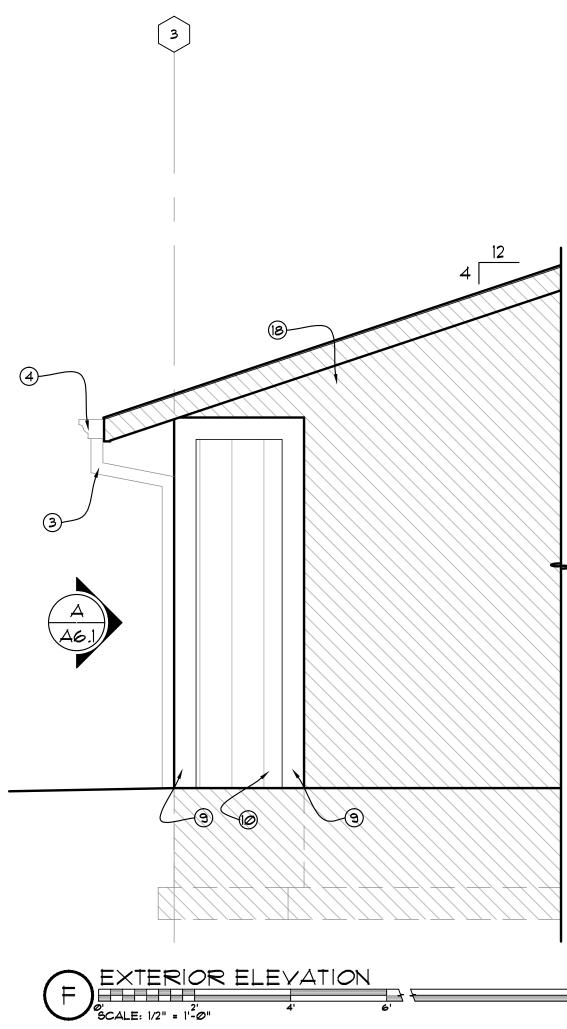
JOB*: 1485.Ø3212Ø22.LU			
DRAI BY:	in _{JSD}		
\triangle			
ISSUE DATE			
SCALE: 1/2"=1'-Ø"			

- 1. FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-49 BLOWN INSULATION) OPEN SOFFIT DOWN SPOUT

- 5. LAP SIDING (W/6" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD.
 / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5/8" GYP.BD.
- 6. IXIO BAND 7. HIDDEN LINE INDICATES TOP OF SECOND FLOOR 8. IX6 TRIM BOARD

- 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26,


- 18. SHADED AREA INDICATES INTERIOR OF STRUCTURE
 19. ADDRESS IDENTIFICATION TO COMPLY WITH THE EUGENE FIRE CODE SECTION 505. ADDRESS NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A CONTRASTING COLOR.

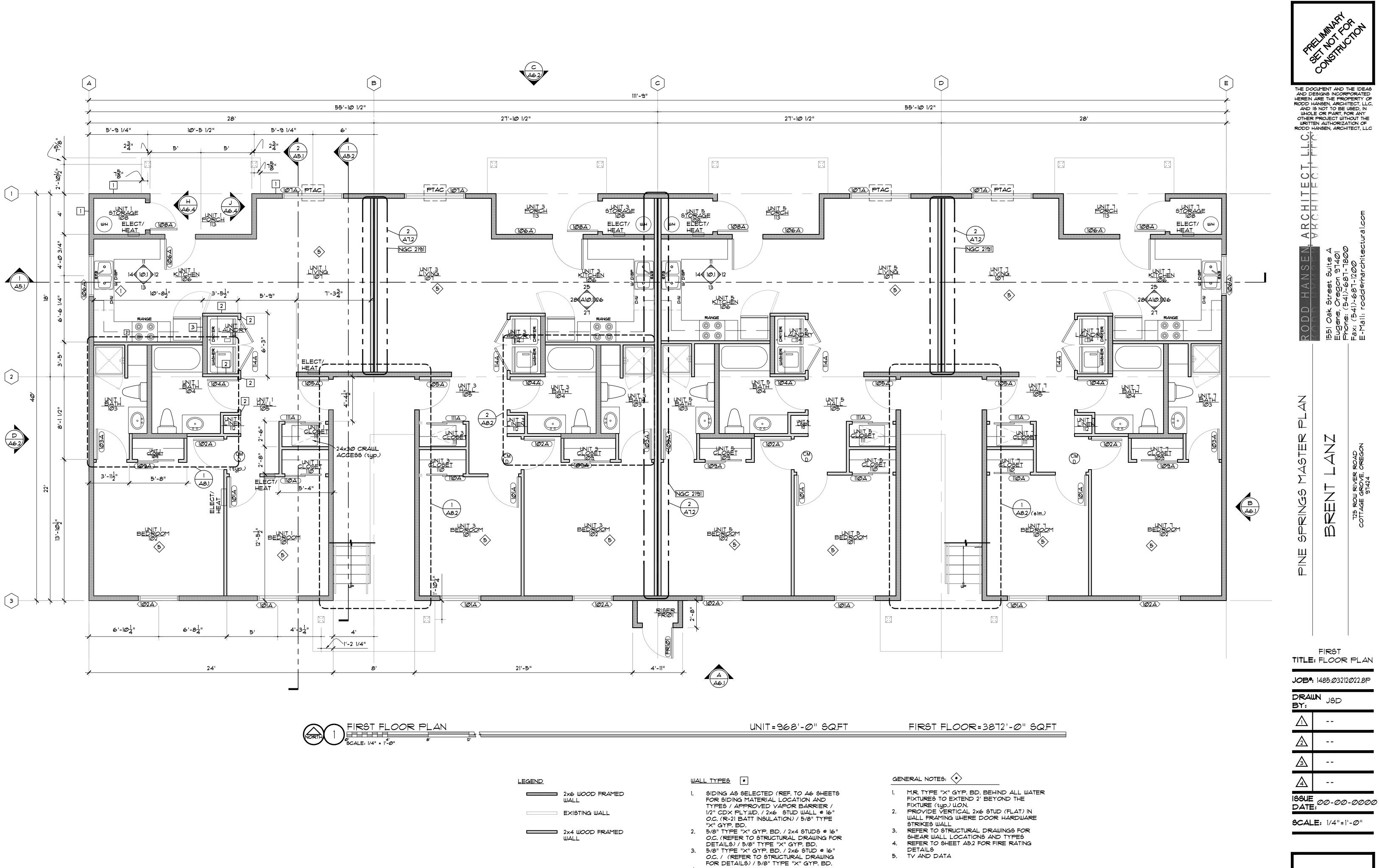

24	ELIMMARY SELIMONTO SELIMONTO CONSTRUCT	R M
AND D HEREIN RODD + AND WHOL OTHER WRITT	CUMENT AND T ESIGNS INCORF ARE THE PRO HANSEN, ARCHI IS NOT TO BE U E OR PART, FO PROJECT WITH EN AUTHORIZA HANSEN, ARCHI	PORATED PERTY OF TECT, LLC, JGED, IN DR ANY HOUT THE TION OF
<u>ARCHITECT</u>	AKCHILECT	stural.com
RODD HANSEN,	1551 Oak Street Suite A Eugene, Oregon 97401 Phone: (541)-687-7800	Fax: (541)-681-1200 E-Mail: rodd@rharchitec
PINE SPRINGS MASTER PLAN	BRENT LANZ	125 ROW RIVER ROAD COTTAGE GROVE, OREGON 91424

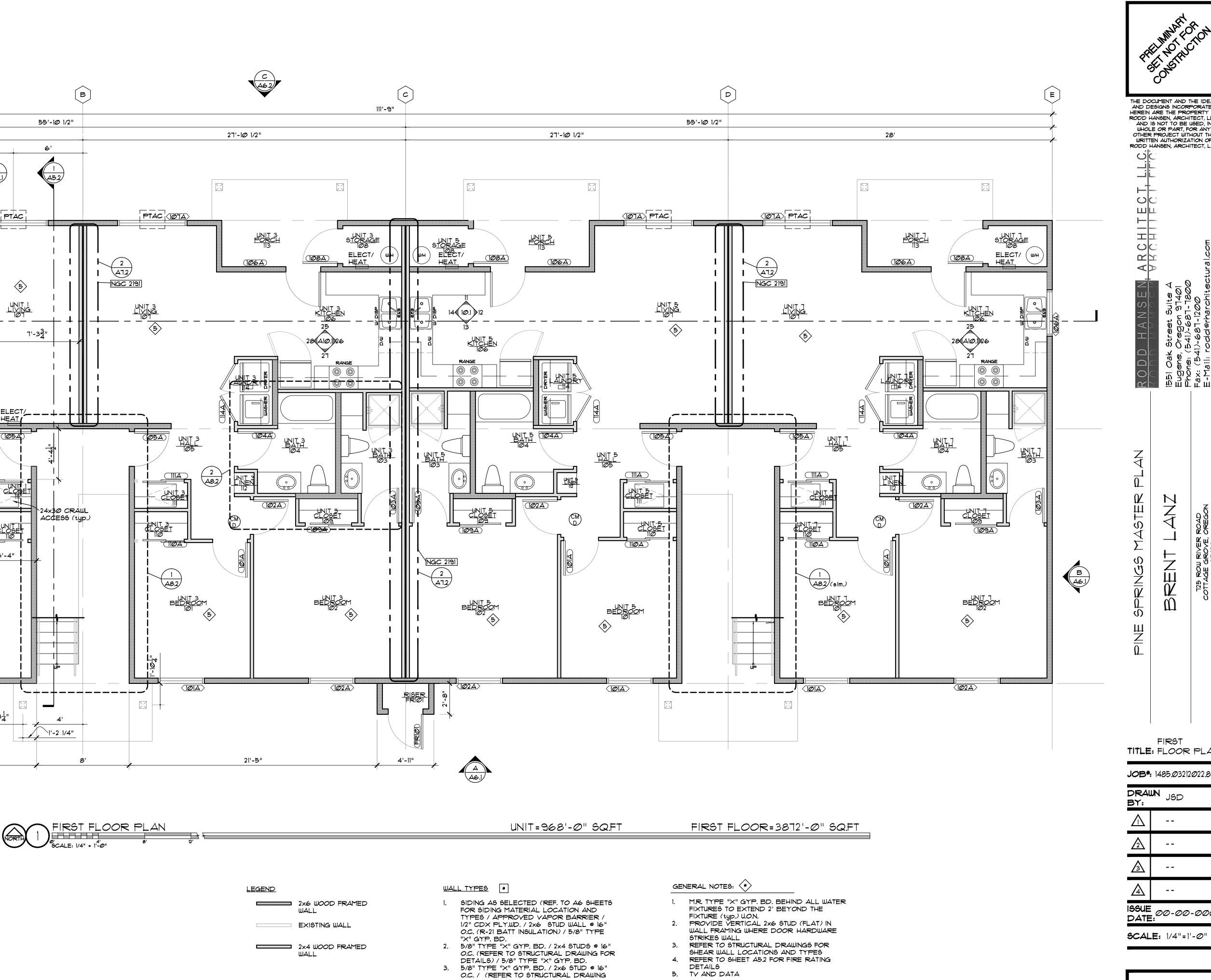
EXTERIOR TITLE: ELEVATIONS

JOB*: 1485.03212022.LU			
DRAU By:	N _{JSD}		
\land			
\triangle			
3			
ISSUE DATE			
SCALE: 1/2"=1'-Ø"			

Key note

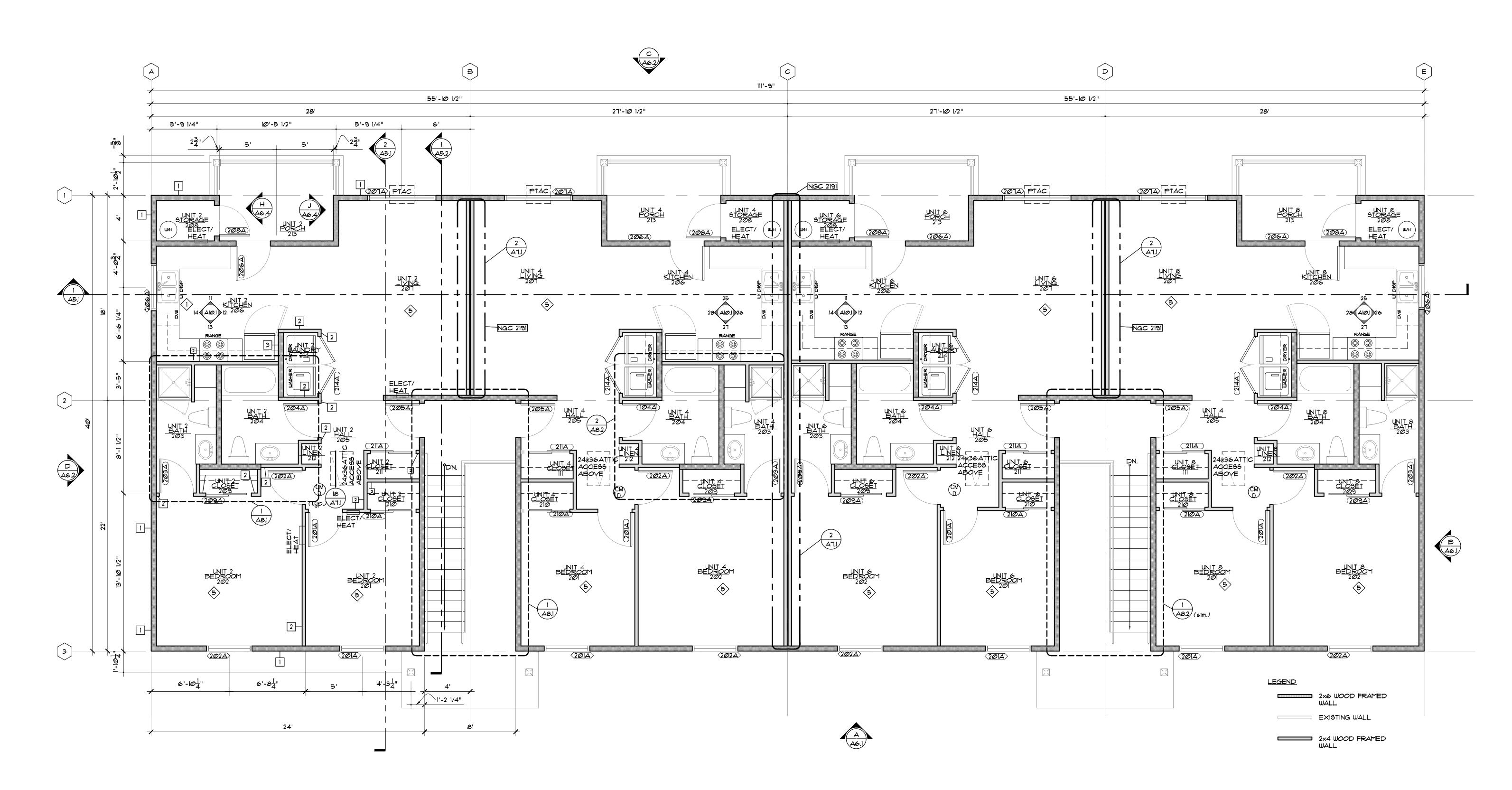
- 1. FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-49 BLOWN INGULATION) 2. OPEN SOFFIT
- 3. DOWN SPOUT
- DOWN SPOUL
 CONTINUOUS GUTTER
 LAP SIDING (W/6" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD. / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5/8" GYP.BD.
- 6. IXIO BAND 1. HIDDEN LINE INDICATES TOP OF SECOND FLOOR 8. IX6 TRIM BOARD 9. IX6 CORNER BOARD 10. HARDI-PANEL 8" GROVES 11. BETACLUNIT AS SELECTED
- 11. PTAC UNIT AS SELECTED
- 12. WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 29/AT.3)
- 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26, 30/A1.3 14. 1x3 @ 16" O.C. / TI-11 PANELS
- 15. Ix4 OVER TI-II NO GROOVE
 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)
- 17. NOT USED
- 18. SHADED AREA INDICATES INTERIOR OF STRUCTURE 19. ADDRESS IDENTIFICATION TO COMPLY WITH THE EUGENE FIRE CODE SECTION 505. ADDRESS NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A CONTRASTING COLOR.


PRELIMMARY PRELIMARY PRELIMARY			
AND D HEREIN RODD + AND WHOL OTHER WRITT	CUMENT AND T ESIGNS INCORF ARE THE PRO HANGEN, ARCHI IS NOT TO BE U E OR PART, FO E PROJECT WITH EN AUTHORIZA HANGEN, ARCHI	PORATED PERTY OF TECT, LLC, JGED, IN DR ANY HOUT THE TION OF	
ARCHITEC		ctural.com	
RODD HANSEN	1551 Oak Street Suite A Eugene, Oregon 974@1 Phone: (541)-681-78@6		
PINE SPRINGS MASTER PLAN	BRENT LANZ	125 ROW RIVER ROAD COTTAGE GROVE, OREGON 91424	


EXTERIOR TITLE: ELEVATIONS

JOB*: 1485.Ø3212Ø22.LU		
DRAWN JSD BT:		
\triangle		
ISSUE		
SCALE: 1/2"=1'-0"		

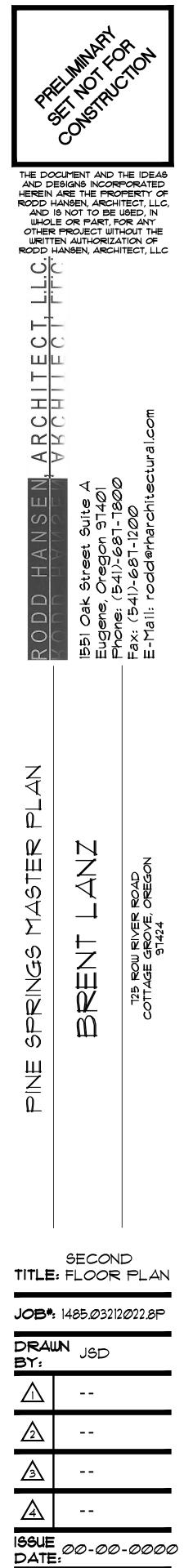
SCALE: 1/2"=1'-0''


A6.3 LEASING UNIT

4.

A3. 8-PLEX

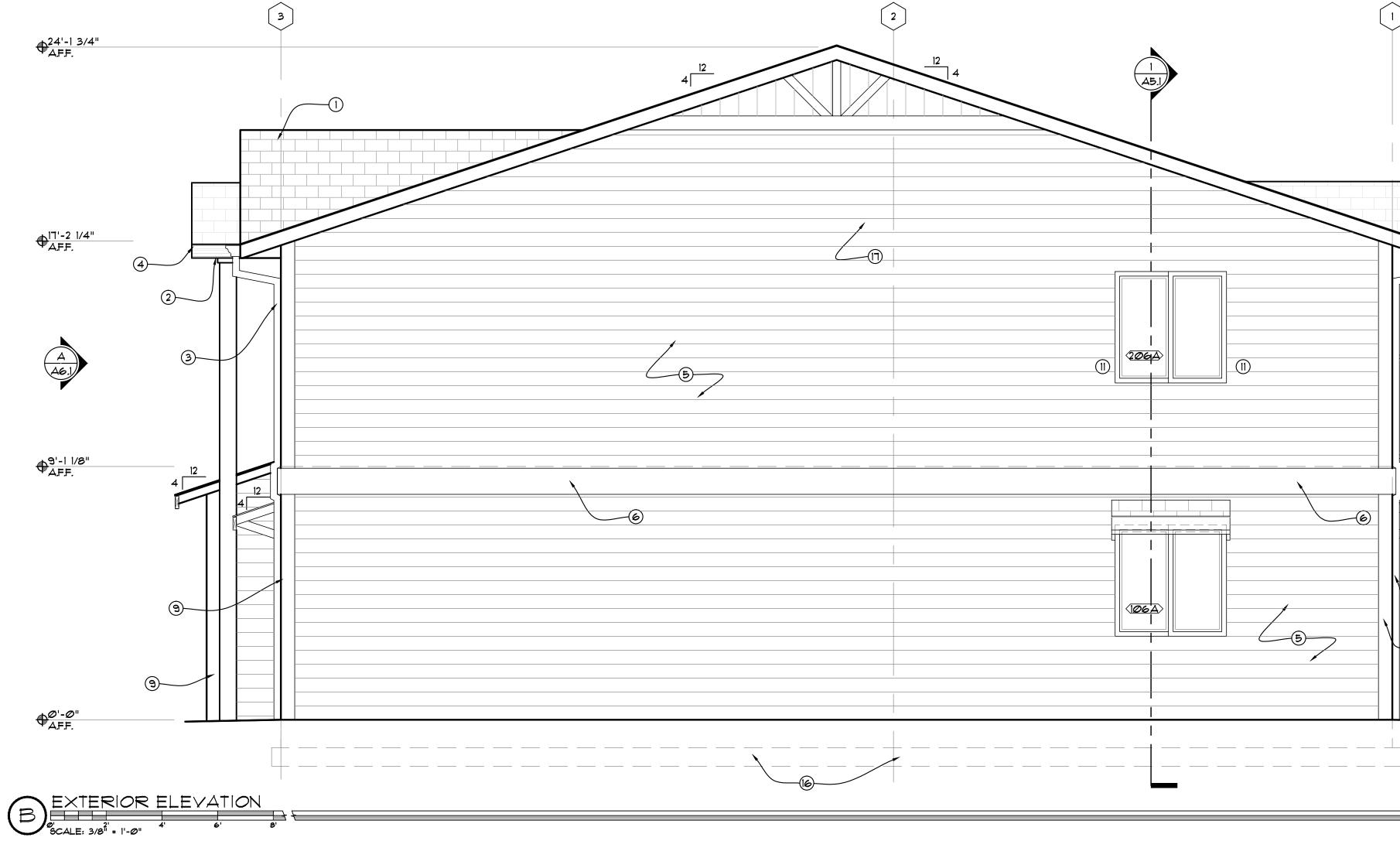
SECOND FLOOR PLAN BUILDINGS

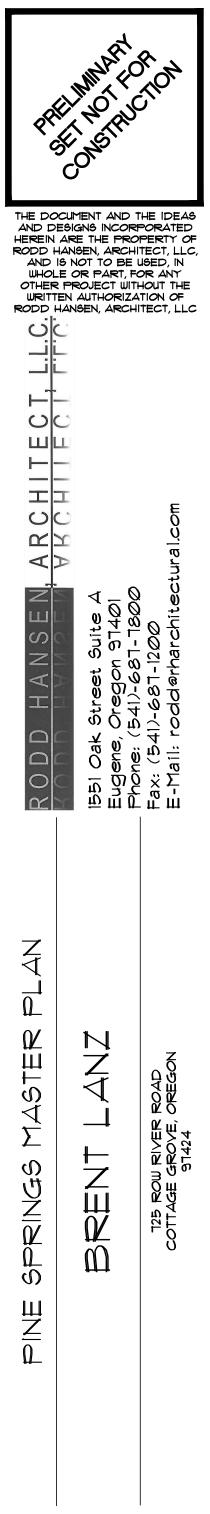

WALL TYPES

- SIDING AS SELECTED (REF. TO AG SHEETS FOR SIDING MATERIAL LOCATION AND TYPES / APPROVED VAPOR BARRIER / I/2" CDX PLY.WD. / 2×6 STUD WALL @ 16" O.C. (R-21 BATT INSULATION) / 5/8" TYPE "X" GYP. BD.
- 2. 5/8" TYPE "X" GYP. BD. / 2x4 STUDS @ 16" O.C. (REFER TO STRUCTURAL DRAWING FOR DETAILS) / 5/8" TYPE "X" GYP. BD.
- 3. 5/8" TYPE "X" GYP. BD. / 2x6 STUD @ 16" O.C. / (REFER TO STRUCTURAL DRAWING FOR DETAILS) / 5/8" TYPE "X" GYP. BD.

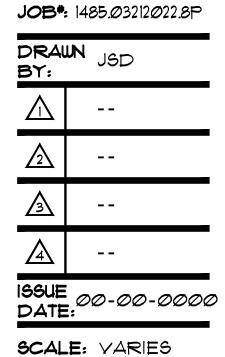
GENERAL NOTES:

4.

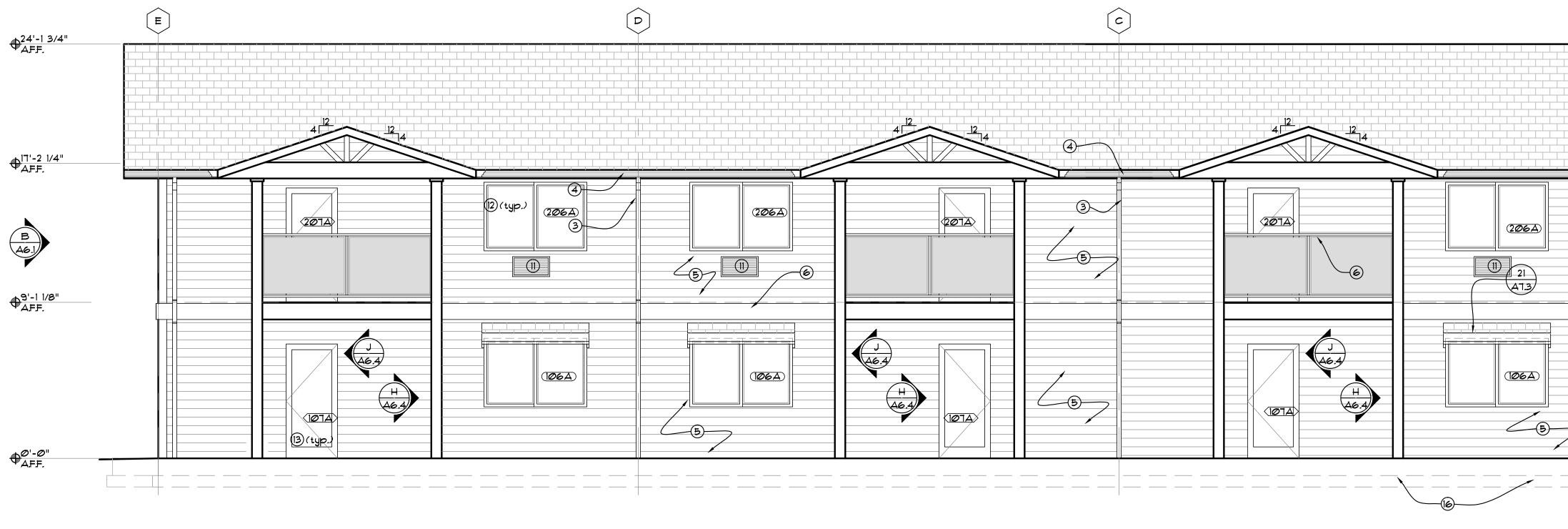

- M.R. TYPE "X" GYP. BD. BEHIND ALL WATER FIXTURES TO EXTEND 2' BEYOND THE FIXTURE (typ.) U.O.N.
 PROVIDE VERTICAL 2×6 STUD (FLAT) IN
- 2. PROVIDE VERTICAL 2×6 STUD (FLAT) IN WALL FRAMING WHERE DOOR HARDWARE STRIKES WALL
- REFER TO STRUCTURAL DRAWINGS FOR SHEAR WALL LOCATIONS AND TYPES
 REFER TO SHEET A5.2 FOR FIRE RATING
- DETAILS 5. TY AND DATA

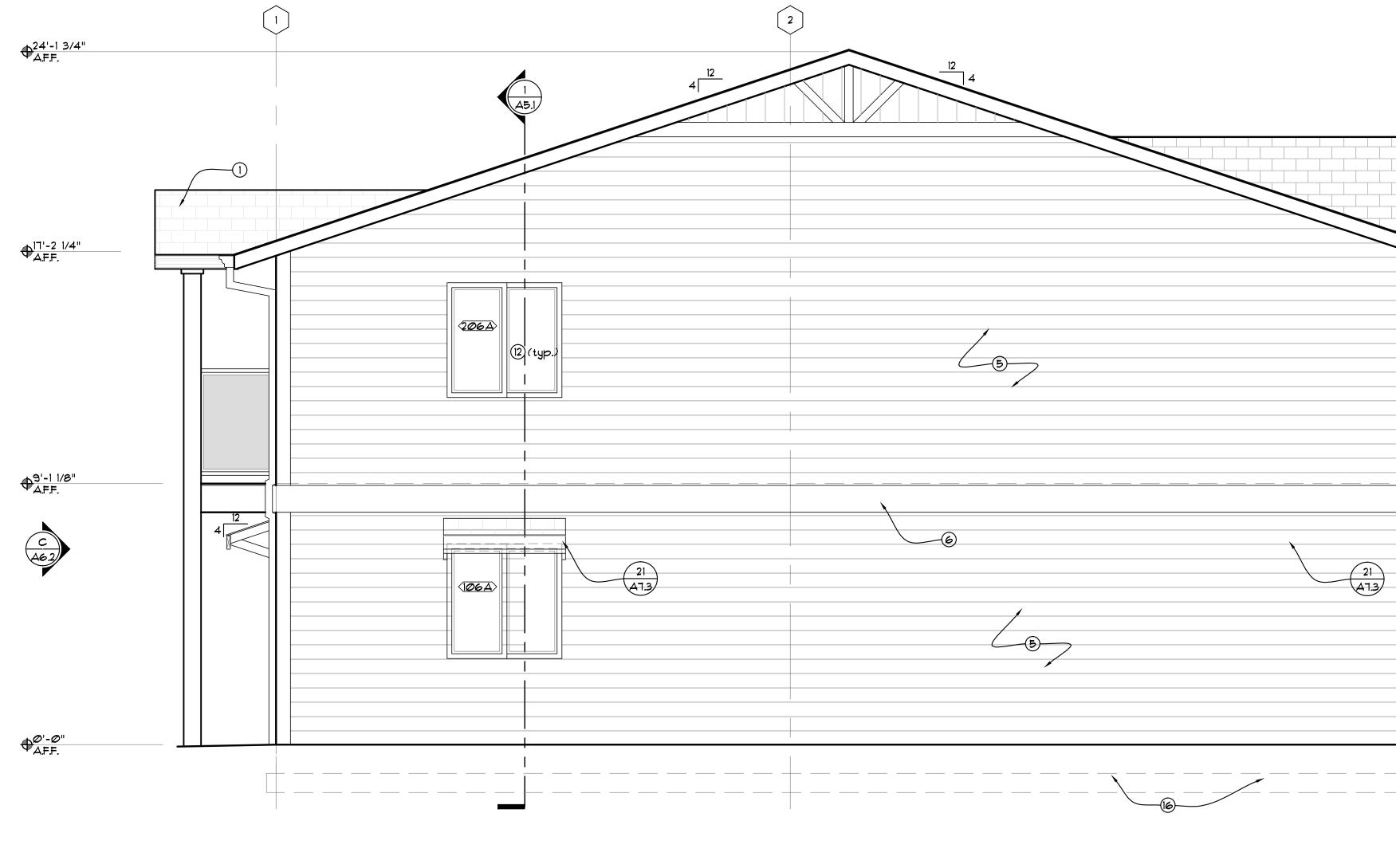


SCALE: 1/4"=1'-Ø"

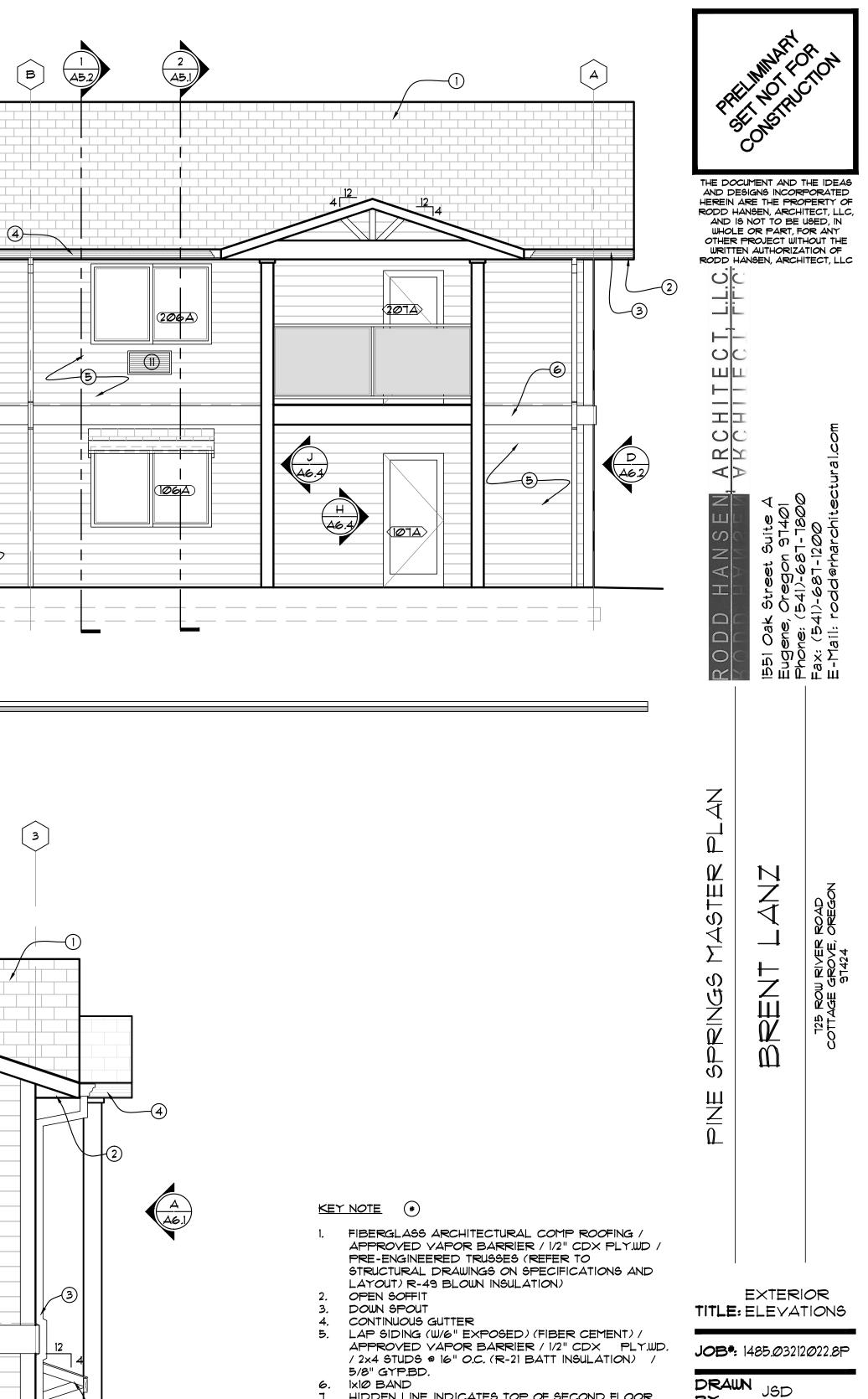

-3 C (A6.2) <u>___</u> -3

- KEY NOTE (*)
- 1. FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-49 BLOWN INSULATION) OPEN SOFFIT DOWN SPOUT
- 2.
- З. CONTINUOUS GUTTER 4.
- LAP SIDING (W/G" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD. / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5. 5/8" GYP.BD.
- 6. IXIØ BAND
 7. HIDDEN LINE INDICATES TOP OF SECOND FLOOR
 8. IX6 TRIM BOARD
 9. IX6 CORNER BOARD
 10. HARDI-PANEL 8" GROVES
 11. PTAC UNIT AS SELECTED
 12. HINDOWLUEAD LAMB GUL DETAIL & (REFER TO 25)


- WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 12. 29/AT.3) 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26, 30/A1.3

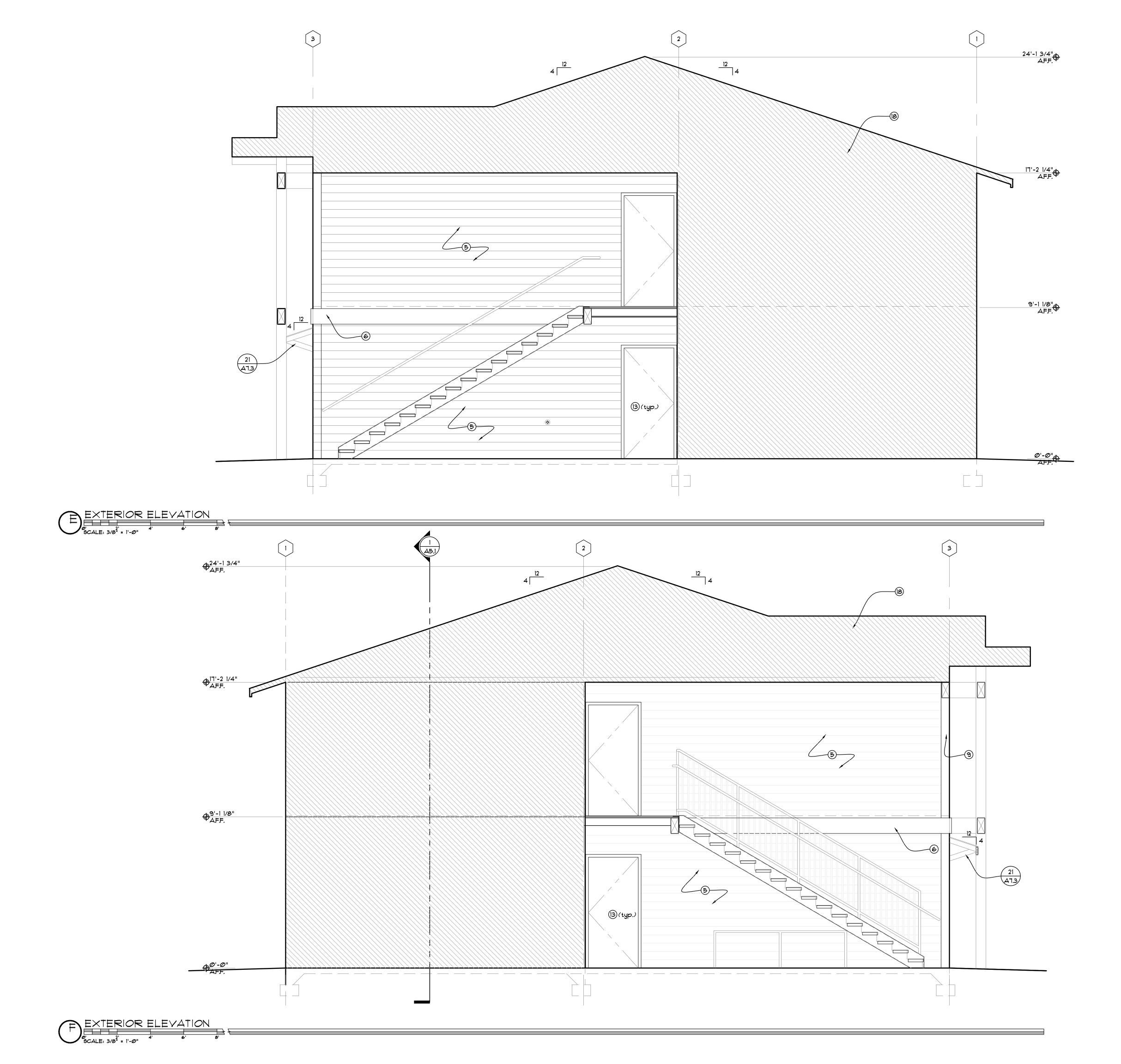

- 14. IX3 @ 16" O.C. / TI-II PANELS
 15. IX4 OVER TI-II NO GROOVE
 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)
- NOT USED IT. 18.
- SHADED AREA INDICATES INTERIOR OF STRUCTURE ADDRESS IDENTIFICATION NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A 19, CONTRASTING COLOR.

EXTERIOR TITLE: ELEVATIONS



EXTERIOR ELEVATION SCALE: 1/4" = 1'-0" 8' 12

- HIDDEN LINE INDICATES TOP OF SECOND FLOOR IX6 TRIM BOARD 8.
- IXG CORNER BOARD 9,
- 10. HARDI-PANEL 8" GROVES 11. PTAC UNIT AS SELECTED
- WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 12. 29/AT.3) 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26,
- 3Ø/A7.3
- 14. 1x3 @ 16" O.C. / T1-11 PANELS
- 15. 1×4 OVER TI-11 NO GROOVE 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)
- 17. NOT USED


21 (A7.3)

18. SHADED AREA INDICATES INTERIOR OF STRUCTURE ADDRESS IDENTIFICATION NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A 19. CONTRASTING COLOR.

DRAUN BY:	JSD
\triangle	
ISSUE DATE:	0-00-0000

SCALE: VARIES

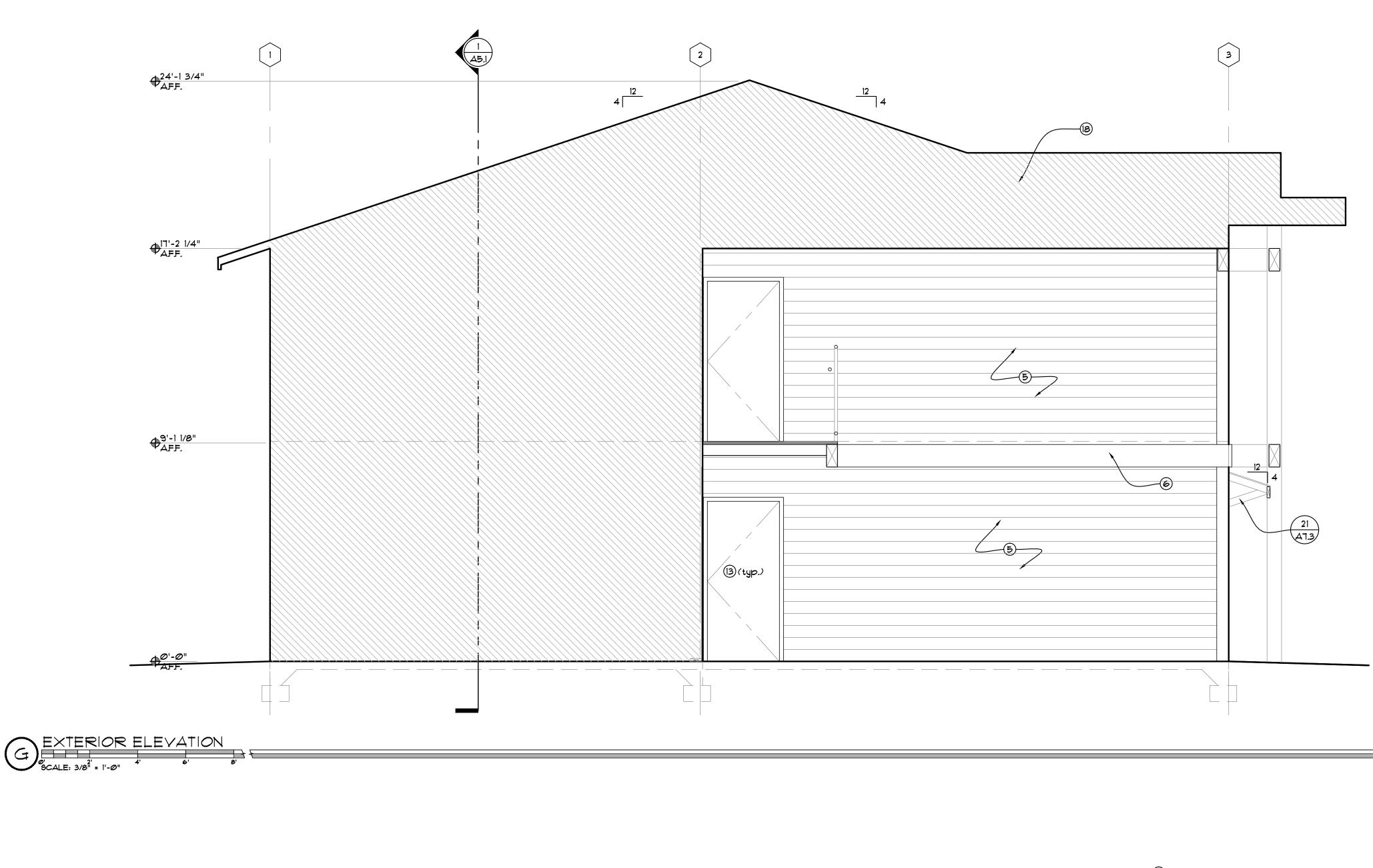
A6. 8-PLEX

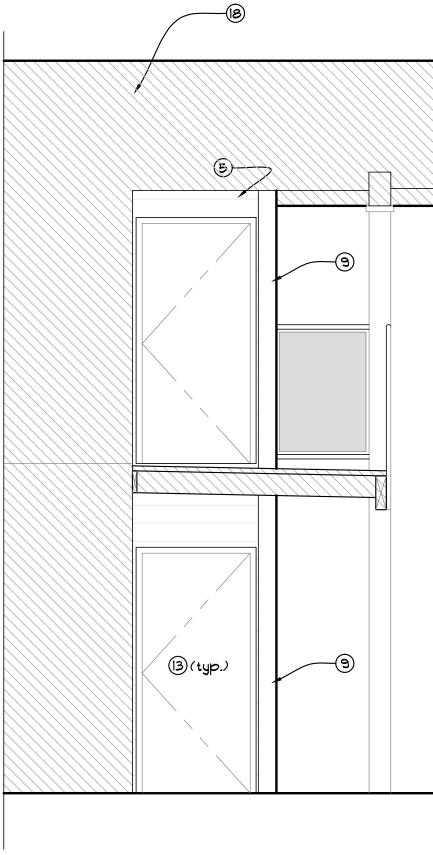
KEY NOTE

- FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-49 BLOWN INSULATION)
 OPEN SOFFIT
 DOWN SPOUT
 CONTINUOUS GUTTER
 LAP SIDING (W/6" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD. / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5/8" GYP.BD.

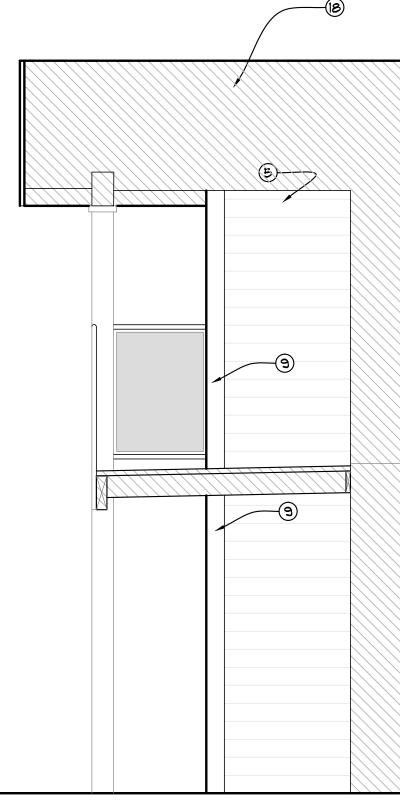
- 5/8" GYP.BD.

- 5/8" GTP.BD.
 6. IXIØ BAND
 7. HIDDEN LINE INDICATES TOP OF SECOND FLOOR
 8. IX6 TRIM BOARD
 9. IX6 CORNER BOARD
 10. HARDI-PANEL 8" GROVES
 11. PTAC UNIT AS SELECTED
 12. WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 29/A1.3)
 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26) 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26, 30/A1.3

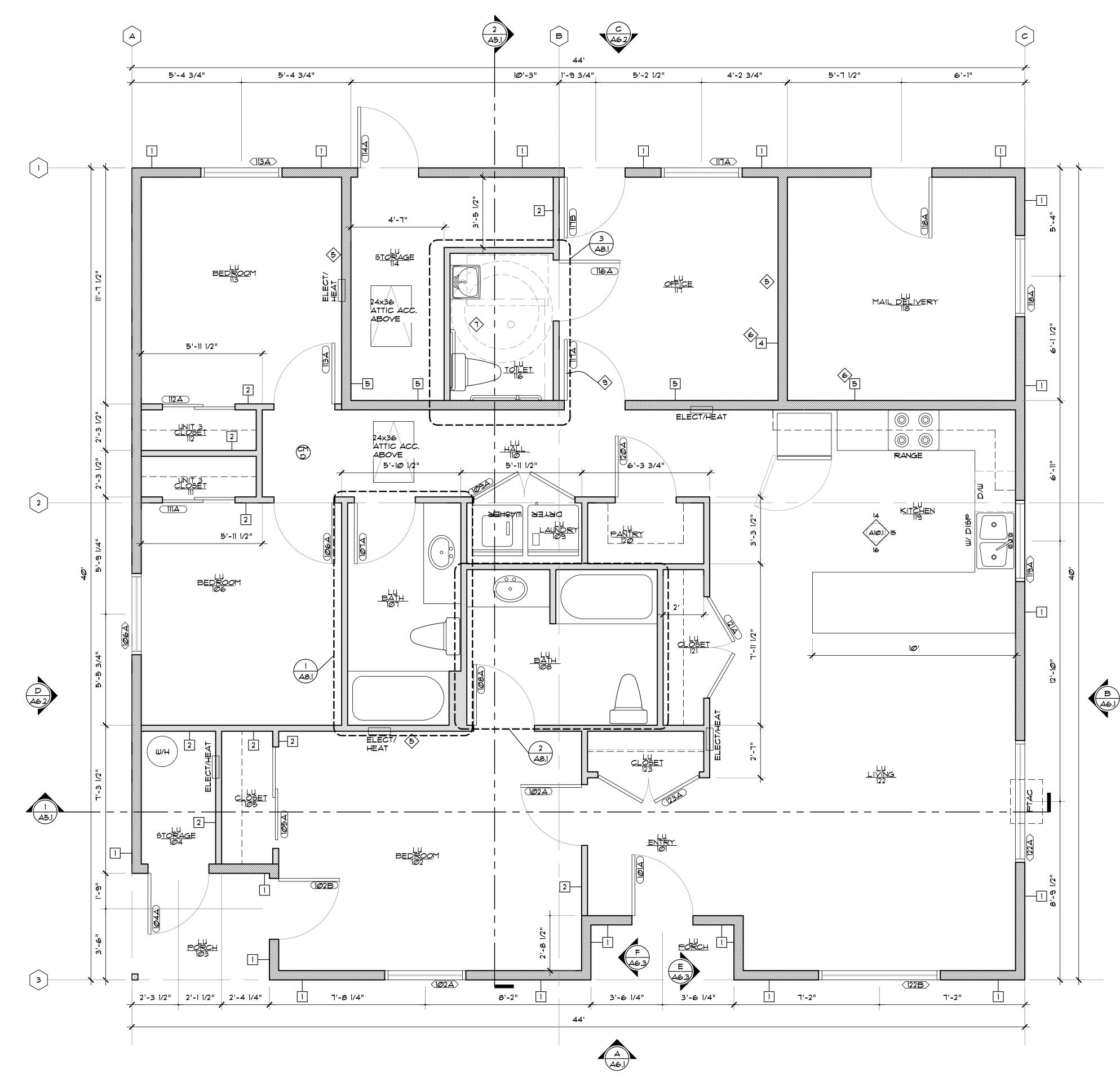

- 14. IX3 @ 16" O.C. / TI-11 PANELS
 15. IX4 OVER TI-11 NO GROOVE
 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)


- SPECIFICATIONS)
 IT. NOT USED
 IS. SHADED AREA INDICATES INTERIOR OF STRUCTURE
 IS. ADDRESS IDENTIFICATION NUMBERS SHALL BE 4"
 HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A CONTRASTING COLOR.

EXTERIOR TITLE: ELEVATIONS

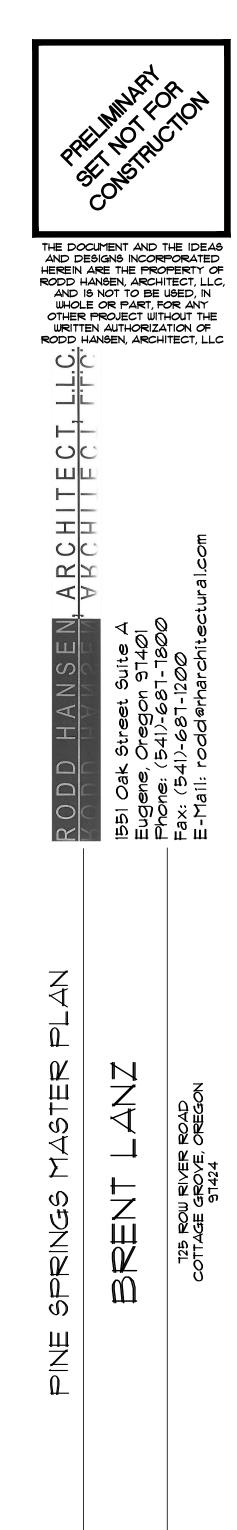

JOB*: 1485.03212022.8P		
DRAI BY:	in _{JSD}	
\triangle		
\bigtriangleup		
ISSUE DATE		
SCALE: 3/8"=1'-Ø"		

KEY NOTE


- 1. FIBERGLASS ARCHITECTURAL COMP ROOFING / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD / APPROVED VAPOR BARRIER / 1/2" CDX PLITUD / PRE-ENGINEERED TRUSSES (REFER TO STRUCTURAL DRAWINGS ON SPECIFICATIONS AND LAYOUT) R-43 BLOWN INSULATION) OPEN SOFFIT DOWN SPOUT
- 2.
- З. CONTINUOUS GUTTER 4.
- LAP SIDING (W/6" EXPOSED) (FIBER CEMENT) / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD. 5. / 2x4 STUDS @ 16" O.C. (R-21 BATT INSULATION) / 5/8" GYP.BD.
- 5/8" GTP.BD.
 6. IXIØ BAND
 7. HIDDEN LINE INDICATES TOP OF SECOND FLOOR
 8. IX6 TRIM BOARD
 9. IX6 CORNER BOARD
 10. HARDI-PANEL 8" GROVES
 11. PTAC UNIT AS SELECTED
 12. WINDOW HEAD, JAMB, SILL DETAILS (REFER TO 25, 29(AT3))

- 29/AT.3)
- 13. DOOR HEAD, JAMB, SILL DETAILS (REFER TO 26, 30/A1.3
- 14. IX3 @ 16" O.C. / TI-11 PANELS
 15. IX4 OVER TI-11 NO GROOVE
 16. FOOTINGS (REFER TO STRUCTURAL FOR SPECIFICATIONS)
- IT. NOT USED
- 18. SHADED AREA INDICATES INTERIOR OF STRUCTURE 19. ADDRESS IDENTIFICATION NUMBERS SHALL BE 4" HIGH (min.), 1/2" STROKE WIDTH (min.) AND OF A CONTRASTING COLOR.

EXTERIOR TITLE: ELEVATIONS


JOB*: 1485.03212022.8P		
DRAI BY:	in _{JSD}	
\bigwedge		
\mathbf{A}		
ISSUE DATE	00-00-0000	
SCALE: 3/8"=1'-Ø"		

UNIT=1675'-0" SQ.FT

	FIRST	
TITLE:	FLOOR	PLAN

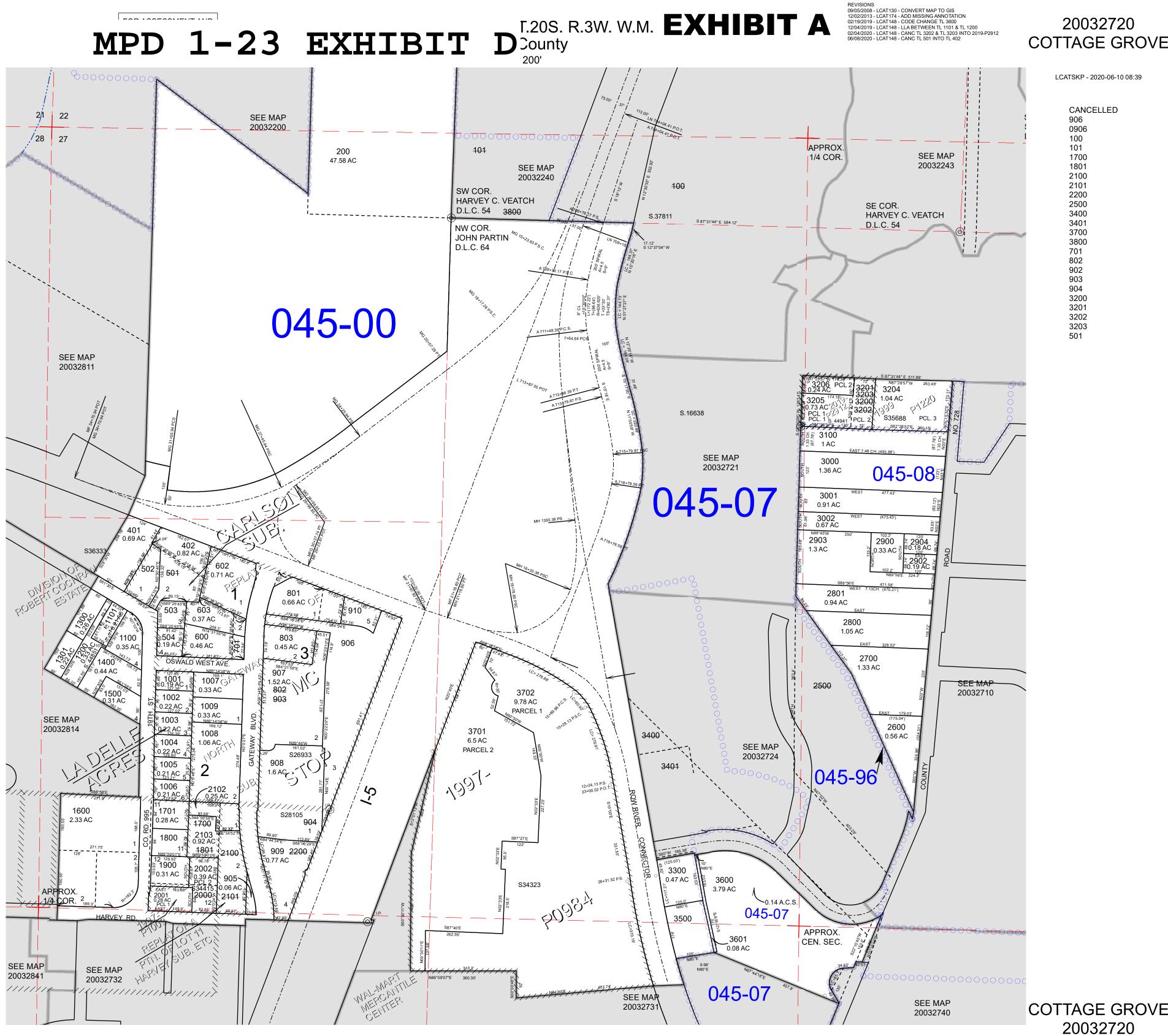
JOB*: 1485.03212022.LU DRAWN JSD BY: 4

ISSUE DATE: 00-00-0000 **SCALE:** 3/8"=1'-Ø"

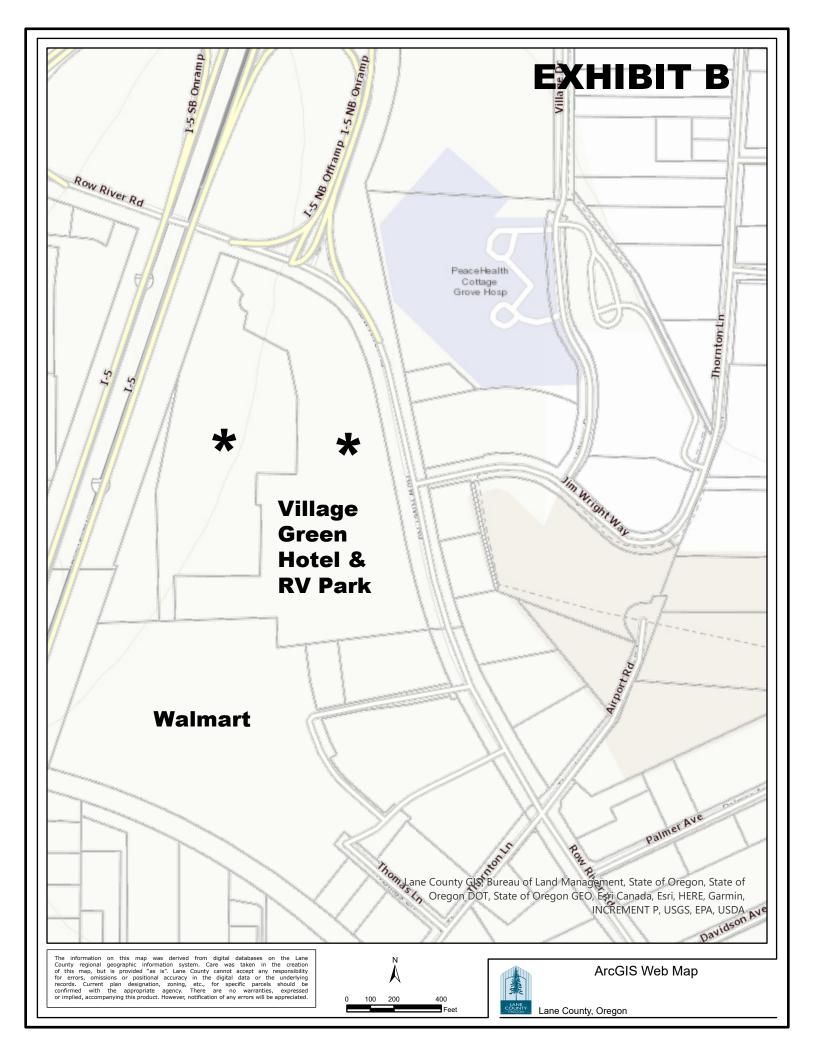
<u>LEGEND</u>

 2×6 WOOD FRAMED WALL
EXISTING WALL
2x4 WOOD FRAMED

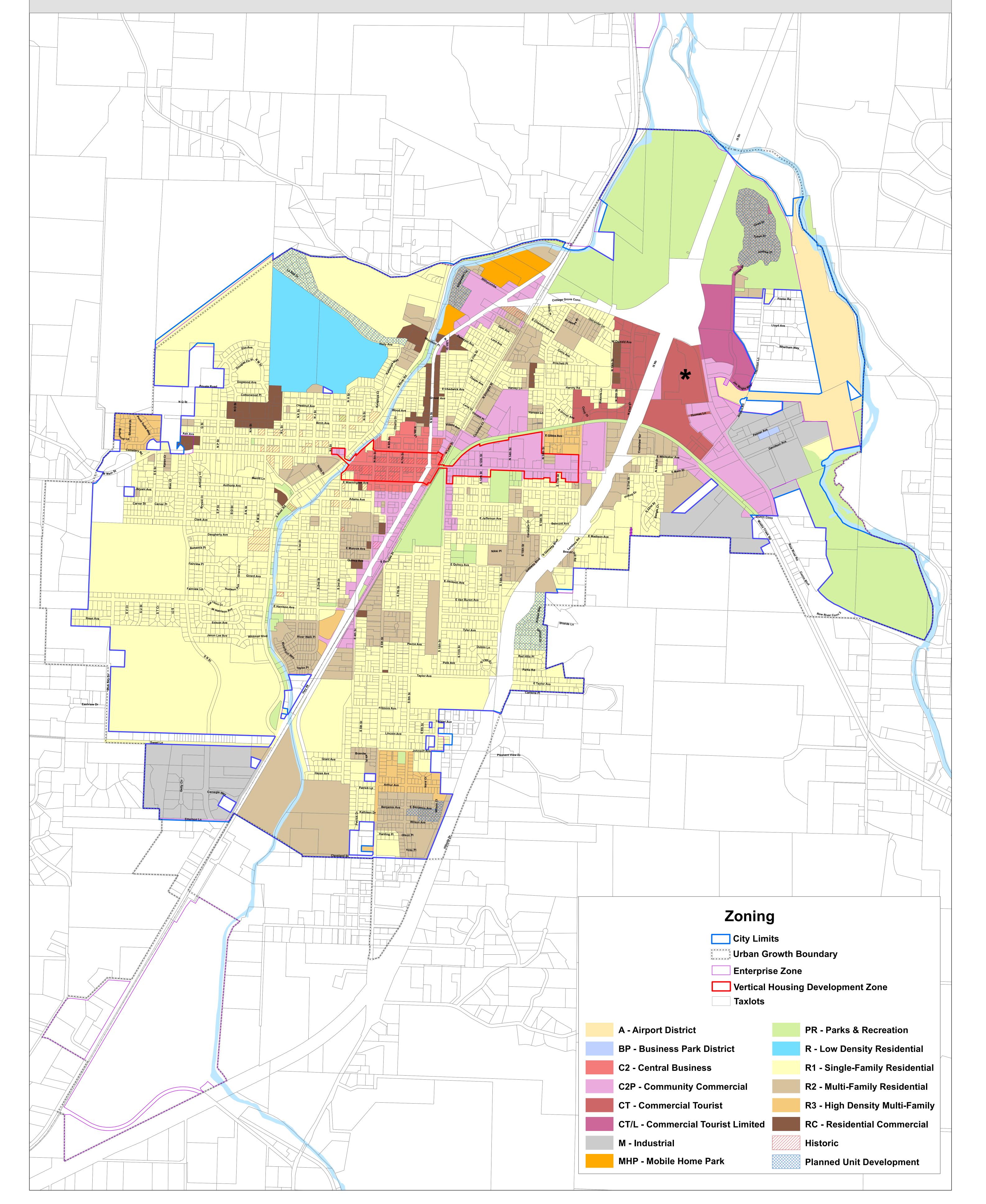
WALL

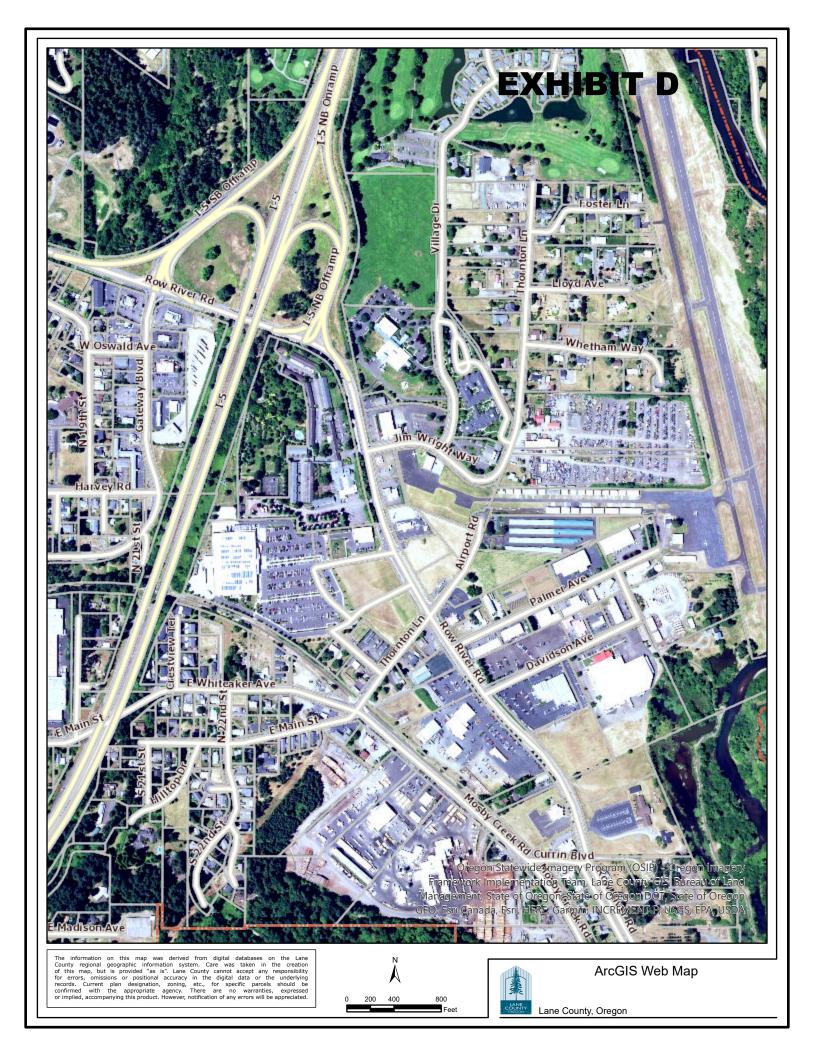

WALL TYPES (*

- SIDING AS SELECTED (REF. TO AG SHEETS 1. FOR SIDING MATERIAL LOCATION AND TYPES / APPROVED VAPOR BARRIER / 1/2" CDX PLY.WD. / 2x6 STUD WALL @ 16" O.C. (R-21 BATT INSULATION) / 5/8" TYPE "X" GYP. BD.
- 2. 5/8" TYPE "X" GYP. BD. / 2x4 STUDS @ 16" O.C. (REFER TO STRUCTURAL DRAWING FOR DETAILS) / 5/8" TYPE "X" GYP. BD. 3. 5/8" TYPE "X" GYP. BD. / 2x6 STUD @ 16"
- O.C. / (REFER TO STRUCTURAL DRAWING FOR DETAILS) / 5/8" TYPE "X" GYP. BD. 4. REFER TO 23/A5.2 WP 3242 5. REFER TO 33/A5.2 WP 4135


GENERAL NOTES: 🔅

- M.R. TYPE "X" GYP. BD. BEHIND ALL WATER FIXTURES TO EXTEND 2' BEYOND THE FIXTURE (typ.) U.O.N. 2. PROVIDE VERTICAL 2×6 STUD (FLAT) IN
- WALL FRAMING WHERE DOOR HARDWARE STRIKES WALL
- 3. REFER TO STRUCTURAL DRAWINGS FOR SHEAR WALL LOCATIONS AND TYPES 4. REFER TO SHEET A5.2 FOR FIRE RATING
- DETAILS
- 5. TV AND DATA 6. WALLS AND PARTITIONS SEPARATING DWELLING UNITS FROM ... PUBLIC OR SERVICE AREAS SHALL HAVE A SOUND TRANSMISSION CLASS (STC) OF NOT LESS THAN 50 FOR AIR-BORNE NOISE WHEN TESTED IN ACCORDANCE WITH ASTM E-90. PENETRATIONS OR PIPING IN CONSTRUCTION ASSEMBLIES FOR PIPING, ELECTRICAL DEVISES, HEATING, EXHAUST DUCTS ETC. SHALL BE SEALED, LINED, INSULATE OR OTHERWISE TREATED TO MAINTAIN THE REQUIRED RATINGS. PLEASE ADDRESS AND UPDATE CONSTRUCTION DOCUMENTS ACCORDINGLY, 2014 OSSC 1207.2
- 7. CONTRACTOR TO VERIFY THAT ALL FIXTURE'S MEET AND ARE INSTALLED TO COMPLY WITH ADA GUIDELINES (ROOM 116 ONLY)
- 8. NOT USED 9. DOOR TO MEET I HOUR FIRE RATING





20032720 **COTTAGE GROVE**

Cottage Grove Zoning EXHIBIT C

April 21, 2022

Mr. Colin Kelly Timberview Construction PO Box 20025 Keizer, Oregon 97307

RE: GEOTECHNICAL ENGINEERING INVESTIGATION PINE SPRINGS AT THE VILLAGE GREEN APARTMENTS 725 ROW RIVER ROAD COTTAGE GROVE, OREGON BRANCH ENGINEERING INC. PROJECT NO. 21-753

Pursuant to your authorization, Branch Engineering Inc. (BEI) performed a geotechnical engineering investigation at the subject site for the proposed development of a multi-family residential housing development.

The accompanying report presents the results of our site research, field exploration and testing, data analyses, as well as our conclusions and recommended geotechnical design parameters for the project. Based on the results of our study, no geotechnical/geologic hazards were identified at the site that would prohibit the proposed residential subdivision. The site is suitable for the planned development and based on a geotechnical/geological perspective, will not adversely impact adjacent properties, provided that the recommendations of this report are implemented in the design and construction of the project.

Sincerely, Branch Engineering Inc.

EXPIRES: 12/31/2023

Ronald J. Derrick P.E., G.E. Principal Geotechnical Engineer

Samuel Ratio

Sam Rabe EIT Engineering Technician

EUGENE-SPRINGFIELD

TABLE OF CONTENTS

1.0	INTRO	DUCTION	3		
1.1	Purpose	and Scope of Work	3		
1.2	Project L	ocation and Description	3		
1.3	Site Infor	mation Resources	4		
2.0	SITE SU	BSURFACE CONDITIONS	4		
2.1	Subsurfa	ce Soils	4		
2.2	Groundw	ater	5		
<u>3.0</u>	GEOLO	GIC SETTING	5		
3.1	Regional	Geology	5		
3.2	Site Geol	ogy	6		
<u>4.0</u>	CONCL	<u>USIONS</u>	6		
<u>5.0</u>	RECOM	MENDATIONS	6		
5.1	Site Prep	paration and Foundation Subgrade Requirements	6		
5.2	Geotech	nical Construction Site Observations	8		
5.3	Engineer	red Fill Recommendations	9		
5.4	Excavati	ons	10		
5.5	Drainage	e and Infiltration	10		
5.6	Soil Bear	ring Capacity and Settlement	10		
5.7	Slabs-or	1-Grade	11		
5.8	Soil Shri	nk/Swell Potential	11		
5.9	Friction	Coefficient and Earth Pressures	11		
5.10	Wet Wea	ther/Dry Weather Construction Practices	11		
5.11	Pavemer	nt Design Recommendations	11		
5.12	Seismic	Site Classification and Hazards	12		
<u>6.0</u>	LIMITA	TIONS	13		
FIGU	RE 1	Site Exploration Map			
FIGU		Site Gradient Visual			
FIGU APPE	re 3 Endix a -	Site Geology Map USCS Soil Key, Test Pit Logs, Infiltration Testing, OWRD Well Log, NRCS Soil S	Survey		
		Information	Information		

1.0 INTRODUCTION

1.1 Purpose and Scope of Work

The purpose of this work is to establish and present geotechnical engineering criteria and requirements related to the site and subsurface conditions that may influence the design and construction of the proposed project. Our field investigation scope of work consisted of a site reconnaissance with subsurface investigation and infiltration testing on February 17, 2022.

The subsurface investigation utilized a mini excavator, equipped with a 2-foot-wide toothed bucket to advance seven exploratory test pits to a maximum depth of 7.5-feet below ground surface (BGS). To provide site specific infiltration rates, four locations where test pits where excavated were used for infiltration testing. See the attached Figure-1, Site Exploration Map, for exploratory test pit locations.

Our scope of work also included pertinent site research activities, engineering data review, analysis, and preparation of this report.

1.2 **Project Location and Description**

The approximately 8-acre subject site is located at coordinates of 43.800129°, North Latitude, and 123.046754° West Longitude in Cottage Grove, Oregon. The rectangularly shaped site is bordered by Interstate-5 on the west, Row River Road on the north and east, and by portions of the Village Green Hotel and open areas to the south.

At the time of this report the site is occupied by the Village Green Hotel and associated pool/hot tub/open spaces, parking and accessways, and garden spaces. The buildings on the northern side of the site had been stripped down and appeared to be in the process of being demolished, the rest of the site is either parking lots and accessways, or open space with gardens. Numerous mature trees are located within the planned development area. Site topography is relatively flat throughout the majority of the site, the exception being a shallow bowl-shaped depression located north of the pool area.

Based on a preliminary drawing provided to BEI geotechnical staff, sixteen multi-family structures are proposed for the site along with open spaces, paved driveways and parking areas. Access to the site is expected to be taken from a driveway on Row River Road. Specific structural loads were not provided; however, two- to three-story wood-framed apartment buildings typically do not exceed 15-kip column loads or two kip/ft line loads on foundations.

1.3 Site Information Resources

The following site investigation activities were performed and literature resources were reviewed for pertinent site information:

- Department of Geologic and Mining Industries (DOGAMI) Online Geologic Map of Oregon.
- USGS OM-110 Geology of the Southern and Southwestern Border Area of the Willamette Valley, Oregon. 1951. By H.E. Vokes, D.A. Myers, and Parke Detweiler Snavely Jr.

- Seven exploratory test pits advanced to a maximum depth of 7.5-feet BGS on February 17, 2021 at the approximate locations shown on the attached Figure-1 Site Exploration Map.
- Four encased falling head infiltration tests performed on February 17, 2022, at the approximate locations shown on Figure-1, Site Exploration Map. See Appendix A for infiltration data sheet.
- Review of the Web Soil Survey of Lane County Area, United States Department of Agricultural (USDA) Natural Resources Conservation Service (NRCS) (attached in Appendix A).
- Oregon Department of Geology and Mineral Industries (DOGAMI) web hazard viewer (HazVu) and Statewide Landslide Information Layer for Oregon (SLIDO).
- Review of available nearby Oregon Department of Water Resources Well Logs (attached in Appendix A).
- Cottage Grove, Oregon, Quadrangle United States Geologic Survey Topographic Map, 2020.
- Oregon Structural Specialty Code 2019 (OSSC 2019), applicable building code criteria.
- Geology of Oregon, sixth edition by Orr, Orr and Baldwin, 2012.

2.0 SITE SUBSURFACE CONDITIONS

The analyses, conclusions, and recommendations contained in this report are based on site conditions as they existed on February 17, 2021 and assume that our exploratory test pit findings presented in Appendix A are representative of the subsurface conditions throughout the site. If during construction subsurface conditions differ from those encountered in the exploratory test pits; BEI requests that we be informed to review the site conditions and adjust our recommendations, if necessary.

2.1 Subsurface Soils

Visual classification of the near surface soils was performed in accordance with the American Society of Testing and Materials (ASTM) Method D-2488 and the Unified Soil Classification System (USCS). Soil samples were collected from test pit sidewalls in the top 5-feet of excavations. Soil samples were taken at depths where noticeable changes in consistency, color, and moisture content were apparent. Subsurface soil conditions were found to be relatively consistent throughout the site, generally consisted of the following.

- Topsoil: Soft, Moist, Dark Brown Clay with Trace Silt and Organics extends to a maximum depth of approximately 30-inches BGS.
- Isolated areas of near-surface silty gravel fill (Fill); IT-2 and IT-3 extending to 2-feet BGS.
- Underlying the near-surface topsoil or fill; brown, moist alluvial Clay (CL); medium-stiff, increasing to stiff in consistency with depth. In the southwest corner of the site, brown, wet, soft, high plasticity Clay (CH) was encountered to 48-inches BGS in Test Pit TP-1.
- Dense alluvial gravel deposits (GP); with sand and minor silt, wet. Depth to gravel ranged from 3-feet to 5-feet deep from ground surface. Depth to the gravel deposits varied.

The NRCS Web Soil Survey mapping unit was used to identify soils at the project site and is summarized below:

Unit Name	Description	
McBee Silty Clay Loam	Moderately well drained silty clay and silt loam deposits derived	
	from recent mixed alluvium. Mapped in central area.	
Salem-Urban land	Well drained deposits of gravelly clay, sand, and silt derived from	
complex	gravelly mixed alluvium. Mapped in Hotel Area	
	Well drained deposits of gravelly silt loam that grade to very	
Salem gravelly silt loam	gravelly sand derived from a parent material of gravelly mixed	
	alluvium. Mapped across the majority of the site.	

The above soil descriptions are consistent with the observations of the test pits excavated at the site. A well log for a site directly across Row River Road fill overlying brown sandy gravel and silty clay with cobbles to at least 12-feet BGS. Well logs in the site vicinity are similar and show fine-grained soil overlying alluvial sand and gravel-cobble deposits to around 50-feet BGS. Underlying the alluvium are sedimentary rocks described as claystone in the well logs to at least 298-feet BGS.

2.2 Groundwater

Groundwater seepage was observed in the gravel deposits at approximately 4-feet BGS in TP-1 and in several isolated near-surface areas of sidewalls in other test pit excavations. Sidewall seepage should be expected during the wet season (typically late October till May) from perched lenses of water during the wet season. A well log from a nearby site was reviewed and lists static water at 8-feet BGS.

Perched groundwater lenses are most likely to be encountered should excavation activities take place during the wet season when rainstorms are more intense and frequent and soils are nearing saturation. Groundwater is not expected to impact shallow foundations, but dewatering may be necessary for in-ground utility work. Utilities deeper than 5-feet BGS will likely require shoring or laying back of sidewalls at a slope of 1:1 (H:V) if soils are wet.

3.0 GEOLOGIC SETTING

The following sections describe the regional and local site geology. Our field findings are consistent with the geologic mapping of the site area by the Oregon Department of Geology and Mineral Industries.

3.1 Regional Geology

The subject site is located near the southernmost portion of the Willamette Valley, where the Coast Range and the Cascade Mountains are differentiated more by geology than topography. In Oregon, the Willamette Valley is an elongate basin which narrows at both ends before terminating in the Calapooya Divide to the south and the Columbia River to the north. The basin is approximately 130 miles long and 40 miles wide. The valley is drained by the Willamette River and drops from an elevation of approximately 400-feet at Eugene, and to near sea level at the northern end of the basin where the Willamette River drains into the Columbia River.

The Willamette River Valley in the area of the subject site is believed to be underlain by undifferentiated sedimentary rock, tuffs, and basalt from the Miocene and Oligocene epochs (approximately 15 to 35 million years ago). Subsequent compression forces and uplifting of the Cascade and Coast Range Mountains depressed the Willamette River Valley. The rapid uplift of the Cascade and Coast Range mountains steepened stream gradients causing increased erosion of the mountains and resulting deposition of thick gravel layers incised within the fluvial deposits.

3.2 Site Geology

The DOGAMI interactive Geologic Map of Oregon and the USGS OM-110 map the geologic unit on the site as recent Quaternary Surficial Deposits which are described as deposits of unconsolidated sediments, including alluvium, colluvium, river and coastal terrace deposits. The underlying geology of the large hillside formation to the southeast of the site is mapped as Oligocene age Volcanic Rocks from the Little Butte Volcanics which is described as basalt with volcanic rocks of widely varying composition.

The nearest mapped active faults are located approximately 16.2-miles southwest and 20-miles to the northeast of the site. Faults are also mapped 2.0-miles west of the site and 4.8-miles north of the site. These faults are not known to be active; however, seismic activity is not uncommon in the Willamette Valley as evidenced by the 1993 Scotts Mills Earthquake east of Salem that registered a 5.7 Richter magnitude, and most recently a 4.2 magnitude earthquake about 12-miles east of Eugene on July 4, 2015.

4.0 CONCLUSIONS

Based on our field observations, subsurface explorations, and data analyses, we conclude that the site is geologically and geotechnically suitable for the proposed development provided that the recommendations of this report are incorporated into the design and construction of the project.

5.0 RECOMMENDATIONS

The following sections present site-specific recommendations for site preparation, drainage, foundations, utility excavations, and slab/pavement design. General material and construction specifications for the items discussed herein are provided in Appendix B.

5.1 Site Preparation and Foundation Subgrade Requirements

The following recommendations are for earthwork in the building foundation areas, public roadway, and private parking areas. Earthwork shall be performed in general accordance with the standard of practice as generally described in Appendix J of the 2019 Oregon Structural Specialty Code and as specified in this report.

All areas intended to directly or laterally support structures, roadways, or pavement areas shall be stripped of vegetation, organic soil, unsuitable fill, and/or other deleterious material such as moisture softened exposed soil. These stripping's shall be removed from the site or reserved for use in landscaping or non-structural areas. In areas of previously existing trees, vegetation, or previously placed fill, the required depth of site clearing/stripping may be increased.

The subsurface conditions observed in our site investigation test pits are relatively consistent; however, the test pits only represent those specific locations on the site. Should soft or unsuitable soils extend to a depth greater than that described herein, or areas of distinct soil variation be discovered, this office shall be notified to perform site observation and additional excavation may be required.

Building Foundation Subgrade Preparation

The depth to suitable subgrade for shallow building foundations is expected to be at least 24- to 30-inches BGS, below any existing fill, organics, or areas of high plasticity clay as encountered in TP-1. Areas where building and pavement are present were not evaluated during the site explorations, and after demolition BEI asks that they be contacted to assess subgrade depths in these areas. Subgrade preparation for foundations bearing in the upper fine grain soil requires that any soft or saturated fine grain soil be removed to medium stiff soil to maintain a similar consistency across the building pad area. The Geotechnical Engineer of Record (GER) or designated representative should visit the site to approve the subgrade soil prior to the placement of structural fill or foundation forms.

The bearing capacity of the existing subgrade at approximately 2.5-feet is considered to be less than 1000 psf, to provide subgrade suitable for a bearing capacity of 2,000 psf and acceptable settlement qualities, the placement of a compacted aggregate with a minimum thickness of 18-inches is recommended under building foundations bearing in the fine grain alluvial soil. If excavation of building pads occurs during the wet season or heavy precipitation occurs when building pad subgrade is exposed, additional excavation and an increase in aggregate thickness to 18-inches will likely be required. The placement of a bi-axial geogrid atop the separation fabric may be an alternative to additional aggregate thickness. Drainage of building pads will be essential to prevent deterioration of the exposed subgrade. Improvement methods may include excavation and fill and/or placement of geotextile fabric or geogrid composites. A BEI representative shall approve exposed subgrade materials and observe proof-rolling activities.

As the subgrade soil is exposed, placement of compacted aggregate should be completed in a timely manner to minimize moisture fluctuations in the subgrade soil. Installation of a geotextile separation fabric on the subgrade soil is recommended and may minimize the loss of aggregate into the subgrade soil. If building footprint excavation encounters the stiff to hard, gravelly soil observed in the test pits, the recommended aggregate thickness may be decreased at the discretion of the GER after on-site observation.

Compacted aggregate fill shall consist of well graded aggregate compacted to at least 90% relative compaction as determined by ASTM D-1557 (modified Proctor) and should be placed in conformance with the recommendations in Section 5.3 below. Conformance with the recommended compaction levels shall be confirmed with compaction testing by nuclear densometer (ASTM D6938) or proof rolls with a loaded 10 CY haul truck. On site material is not recommended to be used as structural fill under building foundations. An angular 3-inch minus sized aggregate may be used in the lower 6-inches of compacted aggregate in lieu of separation fabric. The excavation and placement of engineered fill shall extend a minimum horizontal distance equal to the depth of the fill beyond the outside edge of footings or 24-inches, whichever is greater.

If bearing capacities higher than 2,000 psf are required for foundation design we recommend transferring foundation loads to the underlying dense gravel material expected at 5-feet or greater.

Driven piles, helical piers, micro-piles, stone columns, or auger cast piles are suitable deep foundation methods. Bearing capacities are discussed in Section 5.6 below.

Prior to placing fill or foundation concrete forms, exposed subgrade materials shall be observed by the GER or designated representative. Areas of soft or saturated soil shall be removed to additional depth, or otherwise improved at the discretion and direction of the GER. Once exposed, suitable subgrade shall be covered with compacted crushed aggregate in a timely manner to mitigate moisture fluctuations in the soil.

Areas of Private Access and Parking Improvements

The depth to suitable subgrade for roadway structural sections is below the organic topsoil zone and any remaining stumps or roots from previously existing trees. Areas of high plasticity clay such as the material encountered to approximately 36-inches BGS in TP-1 shall be removed from structural or pavement areas. Should grading plans require engineered fill, see section 5.2 for engineered fill requirements. Prior to placing compacted crushed rock aggregate for the roadway structural section as described in Section 5.11 below, the exposed subgrade shall be approved by the GER or approved representative.

Localized soft areas may be encountered during excavation activities, particularly during periods of wet weather, and will require removal and replacement with structural fill. Proof rolls with a loaded 10 CY haul truck or equivalent vehicle shall be conducted on the prepared subgrade prior to the placement of compacted aggregate, and areas of deflection under wheel loads shall be corrected prior to placing the recommended section of compacted aggregate. If moisture conditions prohibit proof rolls with loaded trucks on the subgrade, proof rolls shall be conducted on top of the recommended aggregate thickness and any observed areas of deflection under load shall be corrected prior to paving.

Utility trenches excavated to depths below the top of the subgrade elevation shall be backfilled with material compacted to 90% relative compaction as determined by ASTM D1557 or AASHTO T-180 (modified Proctor). We expect that fill placed on the site will be imported granular material; use of the native soil on site for fill will require moisture conditioning and appropriate compaction equipment selection. Sampling of on-site material to be used as engineered fill will be required for Proctor testing to generate moisture-density curves unless provided by the supplier. The compaction of fill material supporting pavement areas shall be confirmed by compaction testing by nuclear densometer and the proof roll process described above.

5.2 Geotechnical Construction Site Observations

Periodic site observations by a geotechnical representative of BEI are recommended during the construction of the project; the specific phases of construction that should be observed are shown in Table 2.

Recommended Construction Phases to be Observed by the Geotechnical Engineer		
At completion of subgrade excavation	Subgrade observation by the geotechnical engineer before aggregate placement.	
Imported fill material	Observation of material or information on material type and source.	
Placement or Compaction of fill material	Observation by geotechnical engineer or test results by qualified testing agency.	

Table 2: Construction Phases

5.3 Structural Fill Recommendations

All engineered fill placed on the site shall consist of homogenous material and shall meet the following recommendations.

- Prior to placement on-site, the aggregate to be used as structural fill shall be approved by the GER. If no Proctor curve (moisture-density relationship) for the material performed within the last 12-months is on file, a material sample will be required for testing to determine the maximum dry density and optimum moisture content of the aggregate or fill material.
- The structural fill shall be moisture conditioned within +/- 2% of optimum moisture content and compacted in lifts with loose lift thickness not exceeding 12- inches.
- Periodic visits to the site to verify lift thickness, source material, and compaction efforts shall be conducted by the GER, or designated representative, and documented.
- The recommended compaction level for crushed aggregate or soil fill is 90% relative compaction, respectively, as determined by ASTM D-1557 (modified Proctor). Compaction shall be measured by testing with nuclear densometer ASTM D-6938, or D-1556 sand cone method on structural fill 12-inches in thickness or greater.
- If on-site or imported non-granular material is approved for structural fill placement, a sample of the material shall be collected for modified Proctor testing to use for field compaction test comparison. If, due to the nature of the on-site material compaction testing is not possible due to factors such as oversize rock content and variable material, proof rolls with a fully loaded 10cy haul-truck, or equivalent equipment, shall be observed at regular intervals. Observed areas of soft soil will require over-excavation and replacement with suitable material.

5.4 Excavations

The site soils are classified as either OSHA Type B or C soils for the upper 10-feet of the site soil profile. Heavy equipment or stored materials should not be placed within 10-feet of open excavations.

5.5 Drainage and Infiltration Testing

An on-site storm drainage system is expected to be engineered for this project. Our understanding is storm water infiltration or filtration facilities will be designed and installed as a primary means to manage surface runoff. Four encased falling head infiltration tests were performed on February 17, 2022. Infiltration tests were conducted with 6-inch diameter pipes set and sealed within the test pit. Infiltration test locations are shown on the attached Figures 2. Results of the infiltration testing are listed below with no factor of safety.

Test Location	Test Depth (Inches)	Measured Hydraulic Conductivity, k (in/hr)
IT-1	57.0	60
IT-2	54.5	66
IT-3	57.0	45
IT-4	45.0	8

 Table 3: Hydraulic Conductivity

Results from the infiltration testing indicate that the disposal of stormwater via on-site infiltration is likely feasible. The slower rate of infiltration measured in IT-4 was likely a result of a higher clay content in the soil at the testing depth. Alteration of existing grades for this project will likely change drainage patterns but should not adversely affect adjacent properties. Perimeter landscape and hardscape grades shall be sloped away from the foundations and water shall not be allowed to pond adjacent to footings during or after construction.

5.6 Soil Bearing Capacity and Settlement

Conventional perimeter style foundations and spread footings for column loads are suitable for the proposed building construction and we recommend that loads are distributed evenly to mitigate the potential for differential settlement. If foundation areas are prepared as described in Section 5.1 of this report with 18-inches of compacted aggregate, an allowable bearing capacity of 2,000 psf can be used for design. For foundation loads bearing on the alluvial gravel deposits a bearing capacity of 4,000 psf may be used. Areas of extensive landscaping may have thicker horizons of softer soil with bearing capacities of less than 1000 psf. Depending on site grading plans and the time of the year in which construction takes place, these areas will likely require over excavation or an increase in aggregate thickness to achieve a bearing capacity of 2000 psf. The extent and location of these areas, in addition to the mitigation method will likely need to be determined as earth work progresses through the site. The bearing capacity may be increased by 1/3 for short term loading, such as wind or seismic events.

5.7 Slabs-On-Grade

After site preparation to expose suitable subgrade, load bearing concrete slabs shall be underlain by a minimum of 12-inches of compacted, crushed aggregate. If soft or saturated subgrade is encountered, over-excavation and replacement with engineered fill will be required. A free draining aggregate is recommended beneath structural slabs.

The modulus of subgrade reaction (K) of the in-situ soil at about 24-inches below existing grade is 120 lb/in³ and the correlated California Bearing Ratio of the soil is correlated to be four in the onsite fine grain soils.

5.8 In-Situ Moisture Content & Soil Shrink/Swell Potential

In general, the underlying native silty soils have a low to moderate shrink/swell potential with Free Swell (IS 2720) test results ranging from 30% to 50%. Except for a sample of the plastic clay encountered in TP-1 that was collected and tested with a result of 70% which is considered to be high. The underlying alluvial gravel deposits have a low shrink/swell potential. In-situ moisture content of the samples collected from the site ranged from 30% to 32%.

5.9 Friction Coefficient and Earth Pressures

Because of the variable conditions encountered in site test pit excavations, the lateral earth pressures would be best calculated after locations and retaining structure elevations are finalized. Although not expected, should retaining walls be required BEI asks that our office be contacted once plans are finalized so that we may assess the location and provide parameters for wall design.

5.10 Wet Weather/Dry Weather Construction Practices

The site material is moisture sensitive and will soften with exposure to precipitation. The near surface fine grain soil shall be covered with compacted aggregate in a timely manner after excavation to suitable subgrade to minimize soil moisture fluctuations. BEI recommends that foundation subgrade preparation and general site earthwork be performed during the dry season, generally June through September.

Construction during the wet season will likely require special drainage considerations, such as covering of excavations, pumping to mitigate standing water in footing excavations, additional aggregate depth, and/or over-excavation of moisture softened soils.

5.11 Pavement Design Recommendations

For new asphalt concrete (AC) pavement installation in parking areas, we recommend a minimum pavement thickness of 3-inches of AC over a minimum of 12-inches of compacted crushed aggregate base material. We recommend that the AC thickness be increased to 4-inches in areas of heavier traffic, such as refuse truck routes or delivery vehicles with the same rock section as described above.

Prior to placement of base rock, any soft soil, wet soil, or organic soil shall be removed from the parking subgrade. We recommend that the subgrade be moisture conditioned and compacted to at least 90% of the material's maximum dry density as determined by AASHTO T-180/ASTM D-1557 (modified Proctor). If excavation activities take place during the wet season, a thicker rock section can be used in lieu of moisture conditioning of the subgrade soil.

Pavement Criteria	Asphalt Concrete (inches)	ABM Section (inches)
Heavy Traffic Section	4	12
Private Road Section	3	12

Table 4: Recommended Structural Pavement Section for	private read costion
Table 4. Recommended Structural Pavement Section for	private road section

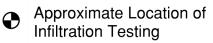
The pavement recommendations discussed above are designed for the type of vehicle use on the site after construction completion, not for construction vehicle traffic which is generally heavier, occurs over a short time, and impacts the site before full pavement sections are constructed. The construction traffic may cause subgrade failures and the site contractor should consider overbuilding designated haul routes through the site to mitigate soft areas at the time of final paving.

5.12 Seismic Site Classification and Hazards

Based on the soil properties encountered in our test pits explorations and nearby well log information, a Seismic Site Class D designation, stiff soil (Table 20.3-1 ASCE 7-16) is recommended for design of site structures. OSSC 2019 (1803.5.11) required criteria for hazards the geotechnical investigation shall address for seismic site class designations C through F are listed below.

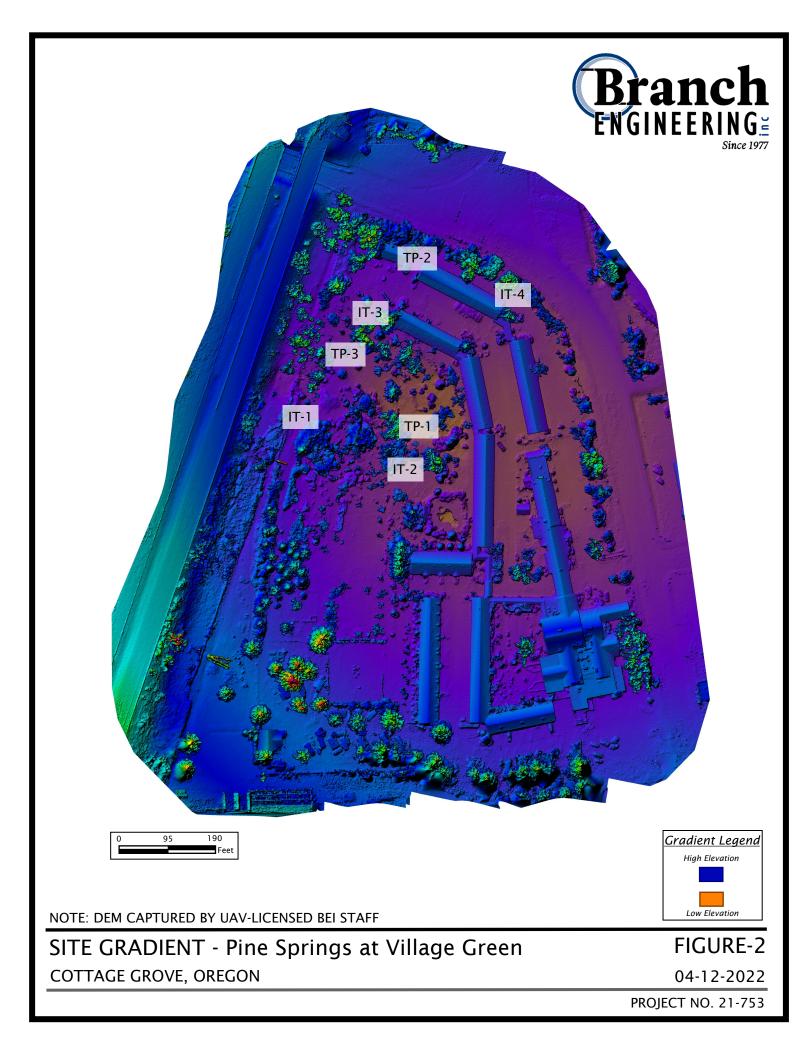
- <u>Slope Instability:</u> The site is mapped low to moderate risk for land sliding with isolated areas of the Interstate 5 fill slopes and ridge to southeast of the site mapped at a high risk. No existing landslides are mapped in locations that may impact the site and no signs of recent or existing slope instability such as hummocky terrain or scarp zones were observed during our visit. The risk landslides impacting the site is low.
- <u>Liquefaction</u>: The site is not mapped as having liquefaction risk when viewed in DOGAMI's Statewide Geohazard Viewer. We did not observe highly liquefiable soil during our site investigation. The risk of surface damage due to liquefaction is low.
- <u>Total and Differential Settlement:</u> The estimated amount of total and differential settlement is less than ³/₄-inch and ¹/₂-inch, respectively, over a 20-foot span of similarly loaded footings, provided subgrade preparation follows the recommendations in Section 5.1 of this report.
- <u>Surface Displacement due to faulting or seismically induced lateral spreading or lateral</u> <u>flow:</u> The closest faults to the site are not known to be active. Surface displacement or seismically induced lateral spreading is not expected at the site.
- <u>Tsunami/seiche:</u> The closest water body is the Coast Fork of the Willamette River, which poses no risk of a seiche or tsunami.

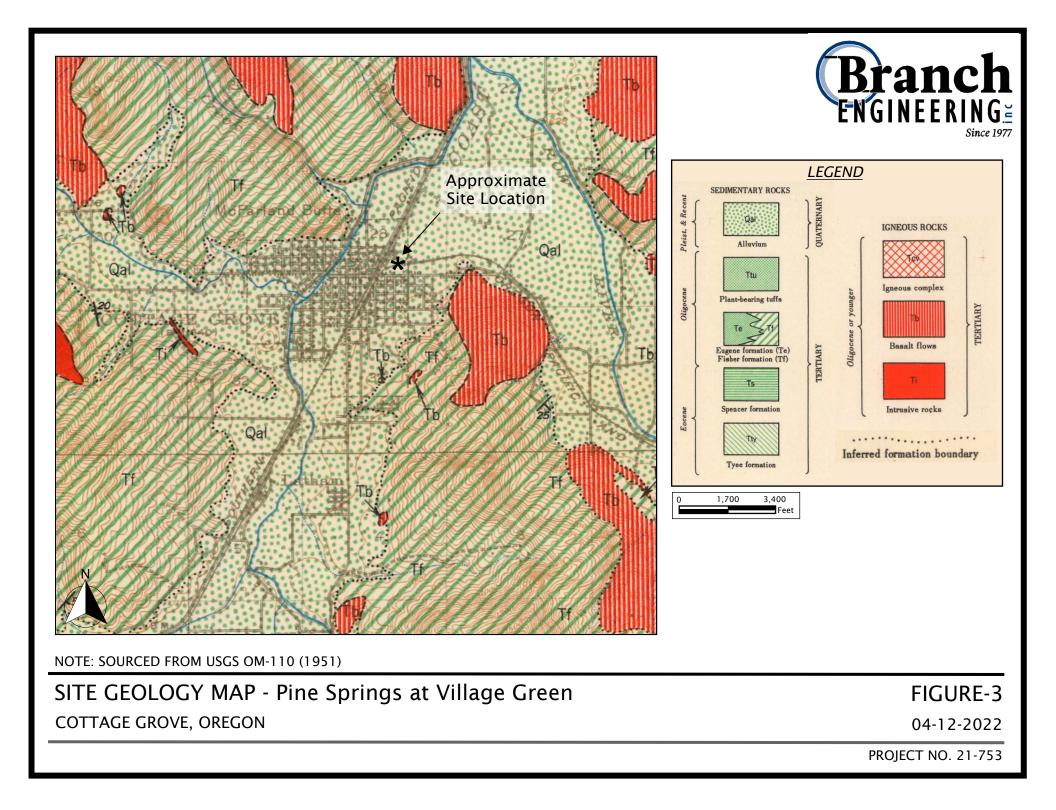
6.0 REPORT LIMITATIONS


This report has presented BEI's site observations and research, subsurface explorations, geotechnical engineering analyses, and recommendations for the proposed site development. The conclusions in this report are based on the conditions described in this report and are intended for the exclusive use of Mr. Colin Kelly, Timberview Construction and their representatives for use in design and construction of the development described herein. The analysis and recommendations may not be suitable for other structures or purposes.

Services performed by the geotechnical engineer for this project have been conducted with the level of care and skill exercised by other current geotechnical professionals in this area. No warranty is herein expressed or implied. The conclusions in this report are based on the site conditions as they currently exist and it is assumed that the limited site locations that were physically investigated generally represent the subsurface conditions at the site. Should site development or site conditions change, or if a substantial amount of time goes by between our site investigation and site development, we reserve the right to review this report for its applicability. If you have any questions regarding the contents of this report please contact our office.

APPROXIMATE SCALE


Site Photo By Licensed BEI UAV Pilot



SITE EXPLORATION MAP- PINE SPRINGS AT VILLAGE GREEN COTTAGE GROVE, OREGON FIGURE-1

3-9-2022

PROJECT NO. 21-753

APPENDIX A:

- TEST PIT LOGS

- INFILTRATION TESTING RESULTS
- OWRD WELL LOGS
- USDA SOIL SURVEY

		RSE GRAINED S			USCS GRAIN SIZE						
RELATIVE	SPT N-VALUE	D&M SAMPLER	D&M SAM	NPLER	FINES	< #200 (.075 mm)					
DENSITY		(140 lbs hammer)	(300 lbs har	mmer)	SAND Fine						
VERY LOOSE	< 4	< 11	< 4			edium #40 - #10 (2 mm)					
LOOSE	4 - 10	11 - 26	4 - 10		Coarse #10 - #4 (4.75 mm)						
AEDIUM DENSE		26 - 74	10 - 30		GRAVEL Fine						
DENSE	30 - 50	74 - 120	30 - 47			arse 0.75 - 3 inch					
VERY DENSE	> 50	> 120	> 47		COBBLES	3 - 12 inches					
			, 1/								
	SPT N-VALUE	D&M SAMPLER	D&M SAM		POCKET PEN. /	MANUAL PENETRATION TEST					
	SFT N-VALUE	(140 lbs hammer)			UNCONFINED (TSF)	MANUAL PENETRATION TEST					
VERY SOFT	< 2	< 3	< 2		< 0.25	Easy several inches by fist					
SOFT	2 - 4	3 - 6	2 - 5		0.25 - 0.50	Easy several inches by thumb					
MEDIUM STIFF	4 - 8	6 - 12	5-9		0.50 - 1.00	Moderate several inches by thumb					
STIFF	8 - 15	12 - 25	9 - 19	>	1.00 - 2.00	Readily indented by thumb					
VERY STIFF	15 - 30	25 - 65	19 - 3	1	2.00 - 4.00	Readily indented by thumbnail					
HARD	> 30	> 65	> 31		> 4.00	Difficult by thumbnail					
UNIFIED SOI	L CLASSIFIC	ATION CHART									
MAJOR DIVISIO	ONS		GROU	IP SYMB	OLS AND TYPICAL N	IAMES					
	GRAVELS: 50	Z CLEAN	GW	Well-ar	aded aravels and a	gravel-sand mixtures, little or no fines.					
COARSE-	or more	GRAVELS				I gravel-sand mixtures, little or no fine					
GRAINED	retained on	GRAVELS WIT			vels, gravel-sand-sil						
SOILS:	the No. 4 siev				gravels, gravel-san						
More than						avelly sands, little or no fines.					
50% retained	SANDS: 50% (or CLEAN SAND				gravelly sands, little or no fines.					
on No. 200 sieve	more passing				nds, sand-silt mixture						
21646	the No. 4 siev	/e FINES			sands, sand-clay m						
					nic silts, rock flour, cl						
		LIQUID LIMIT			ganic clays of low to medium plasticity, lean clay						
SOILS: Less than		LESS THAN 50			ganic silt and organic silty clays of low plasticity.						
50% retained	SILT AND CLA	λΥ		Inorganic silts, clayey silts.							
on No. 200		LIQUID LIMIT 5		Inorganic clays of high plasticity, fat clays.							
sieve		OR GREATER			c clays of medium t						
	I IIGHLY ORGANI				uck, and other high						
		C 30113		STRUC							
		isty, dry to the touc			÷,	rers of material or color > 6mm thick.					
		aves no moisture on			ATED: Alternating la						
	moisture on ha					finate fracture planes.					
WEI: Visble fre	e water, usually	<i>saturated</i>				blished, or glossy fracture planes.					
PLASTICIT	DRY STRENGTH	DILATANCY TO				t can be broken down into small					
ML Non to Lov			con't roll			further breakdown.					
CL Low to Me			1edium			of different soils, note thickness.					
	gh Low to Med.	None to Slow Low	v io ivicu.	номо	GENEOUS: Same co	olor and appearance throughout.					
сн Med. to Hig	gh High to V.High	None	High								
LIST OF ABBI	REVIATION &	EXPLANATIONS	5								
		est split barrel samp	bler	G	Grab sample						
D&M Dames c	and Moore sam	pler		MC							
LL Atterber	g Liquid Limit			MD	Moisture Density						
PL Atterber	g Plastic Limit			UC	Unconfined Com	pressive Strength					
PP Pocket P	enetrometer										
VS Vane Sh	ear										
						TABLE A-					

Branch GEOTECHNICAL SITE INVESTIGATION EXPLORATORY KEY

stace 1977 310 5th Street Springfield, Oregon | p: 541.779.2577 | www.branchengineering.com

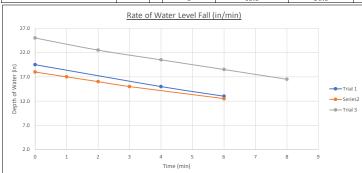
	(Branch ENGINEERING Success Suc						Te	est P		D: I eet 1	
Client:	Colin I		Project Name:	Pine Springs Devlo	pment	at the \	/illage	Gree	n			
-	t Number		Project Location:	Row River Road				gon				
	tarted:	Feb 17 2022 Completed: Feb 17 2022		SPR	Chec	ked By			RJ	D		
Contra Metho		Branch Engineering Inc.	Latitude:	Longitude:			E	levati	on:			
Equipr		Test Pit Excavation Tracked Excavator	Ground Water Levels									
Notes:												
Depth	Graphic	Material Descri		Sample	Pocket Pen. (tsf)		MC: PL LL		•∎			
					 	-	10 2	20 30	40 50	60	70 80	90
		Soft, Moist, Dark Brown Clay with Trace Silt and	l Organics.									
		Medium Stiff, Moist, Brown-Gray High Plasticity	/ Clay and Fine Roots.							\square		
2								+++		++	++	
										\square	+++	
3												
										\square		
4										++	+++	
								$\left \right $		$\left \right $	+++	
5	•	Medium Dense, Moist, Brown Gray Silt, Sand, a	nd Rounded Gravel-Cobble.					+++	++++	++	+++	+++
								+++		+++	+++	
6										\square		
7												
8 -												
										$\parallel \mid$	+++	+++
9 _								$\left \right $	+++	$\left \right \right $	$\left \right \right $	+++
							+ +	+++	+++	++	+++	+++
10												
			Fines Content	⊗ Moisture Cor	l ntent	•	-	Plastic	: Limit :	and L	_iquid	Limit

	(Branch						Tes	st Pi	t ID	: IT-	2
										She	et 1 d	of
		civil · transportation structural · geotechnical S U R V E Y I N G										
Client				Pine Springs Devlo					n			
1	t Number		Project Location:	Row River Road				gon				
Date S	Started:	Feb 17 2022 Completed: Feb 17 2022 Branch Engineering Inc. Feb 17 2022	Logged By: Latitude:	SPR Longitude:	Chec	ked By		levati	RJI	2		
Metho		Test Pit Excavation	Ground Water Levels	Longitude.				evali	011.			-
Equip		Tracked Excavator										
Notes	:											
			$\mathbf{\nabla}$									
th	hic			ple	Pen.	it Wt. f)	MC: 0 PL LL		-∎			
Depth	Graphic	Material Description	1	Sample	Pocket Pen. (tsf)	Dry Unit Wt. (pcf)						
					-		10 2	20 30	40 50	60 7	0 80 9	<u>30</u>
=		Soft, Moist, Dark Brown Clay with Trace Silt and Org	anics, Interpreted as Fill.									
-										\square		+
1 -							+++		+++	\square		╀
-												
-												
2 -												1
-		Medium Stiff, Moist, Brown Clay with Trace Silt and	Sand Medium Plasticity							\vdash	+++	╀
	1///		sana, meanann hastierty.									
3 -	1///											t
-	1///									Ш		
	1///											
4 -	<i>1///</i>						$\left + + + \right $			\vdash	++++	+
-		 Medium Dense, Moist, Brown-Gray Medium Graine	d Sand with Trace Silt an	d								
-		Rounded Gravel.		/								t
5 -												
-							$\left + + + \right $			\vdash	++++	╀
6 -												t
7 -												╀
-												t
8 -								ЩЦ		Ш	ЩЦ	+
-							+++	+++	+++	$\parallel \downarrow$	+++	+
9 -												t
-								Щ		$\parallel \mid$	$\parallel \parallel$	+
10 -	┨──┤─											
			Fines Content	 Moisture Cor 	ntent	•	-∎ ₽	Plastic	: Limit a	and I	iguid I	— im
			v									

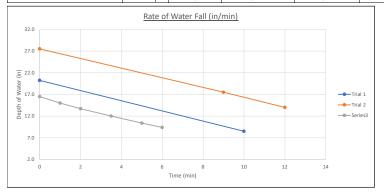
	(Test	Pit		IT-3 eet 1	
Client:	Colin	Kellev	Project Name: P	ine Springs Devlo	pment	at the '	Village	e Gree	n			
	t Number		Project Location:	Row River Roa								
Date S	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR	Chec	ked By	:		R	ŊD		
Contra		Branch Engineering Inc.	Latitude:	Longitude:				Elevati	ion:			
Metho		Test Pit Excavation	Ground Water Levels									
Equipr		Tracked Excavator										
Notes												
Depth	Graphic	Material Description		Sample	Pocket Pen. (tsf)	Ś	MC: PL L	⊗ L: ●-	-8			
						Δ	10	20 30	40 5	0 60	70 80) 90
_	55 55 55	Soft, Moist, Dark Brown Clay with Trace Silt and Orga	nics. PVC Pipe at 10-inch	es				+++			+++	
-		BGS.										
-												
=							$\left \left \right \right $					
1 _											+++	\dagger
=							$\left \left \right \right $					
-												
-												
2 -	1777	Medium Stiff, Moist, Brown Clay with Trace Silt and Sa	and, Medium Plasticity.									
-												
-												
3 —									Ш			
_	1///								Ш			
-	{///											
4 -	{///										+++	
	Y///											
_	¥774								+ +		+++	+++
-												
5 -							$\left \right $	+++-	+++	+++	+++	+++
=												
-							$\left \right $	++++	$\left \right $		+++	+++
-												
6 _								++++			+++	+++
-												
-										_ † ††	+++	+++
_												
7 _												
-												
-												
8 _							Ш		Ш			
° =												
=							Щ		ЩЦ		$\parallel \mid$	$\parallel \parallel$
-							$\left \left \right \right $					
9 -								$\downarrow\downarrow\downarrow\downarrow$	$\parallel \parallel$		$\downarrow\downarrow\downarrow\downarrow$	$\parallel \parallel$
							$\left \left \right \right $		$\left \right \left \right $			
-								+++			+++	+++
=							$\left \left \right \right $					
10 -					1							
					1	-	-					
			Fines Content	Ø Moisture Cor	ntent	•	-	Plastic	, Limit	and	Liquid	Limit

	(Test	t Pit	ID:	IT	-4
Client:			Project Name:	Pine Springs D							She	et 1	L of 1
	t Number		Project Location:	Row River	Road				on				
1	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR		Chec	ked By	:		RJE)		
Contra		Branch Engineering Inc.	Latitude:	Longitu	de:			Ele	evatio	on:			
Metho		Test Pit Excavation	Ground Water Levels										
Equipn		Tracked Excavator											
Notes:													
Depth	Graphic	Material Description		Samole		Pocket Pen. (tsf)	Dry Unit Wt. (pcf)	MC: @ PL LL:					
		Soft, Moist, Mottled Brown-Gray Clay with Trace Silt	and Organics.			Po	Dry	10 20	0 30 4	40 50	60 7	0 80) 90
1		Soft to Medium Stiff, Moist, Brown to Reddish Brown	n Clay, Trace Silt and San	ıd,									
2		Scattered Gravel.											
2													
3													
4											++		
											+		+++-
5											+	\square	+++
											+	\square	
6											+		+++-
											+	\square	+++
7											+	\square	+++-
											+	$\left \right $	+++
8											+	$\left \right \right $	+++
											+		+++
9											+		
10 -			Fines Content	⊗ Moisture	e Con	tent	•	-∎ P	lastic	Limit a	ind Li	iquid	Limit

	Ć	Branch ENGINEERING [™]									Test	Pit I		TP- et 1	
		civil - transportation structural - geotechnical S U R V E Y I N G													
Client					Project Name:	Pine Sprin						1			
	t Number:				Project Location:		iver Roa				gon				
Date S Contra	started:	Feb 17 2022	Completed: For	eb 17 2022	Logged By:	SPR		_ Chec	ked By		evatio	RJE)		
Metho		Branch Engineer	ing inc.		_Latitude: Ground Water Leve		gitude:				evano)n: -			
Equip		Tracked Excavator				.15									
Notes															
						_									
Depth	Graphic		Mater	ial Description			Sample	Pocket Pen. (tsf)	Ś	MC: 0 PL LL		8			
							0,	Po	Dry						
		Coft Maist Dark Dra		and Cilt and Organ	iec					10 2	20 30 4	40 50	60 70		90
		Soft, Moist, Dark Brow	whiciay with the	ice siit and Organ	ics.										
										$\left \right $		++++	+++		++
-															
-		Medium Stiff, Moist, E		h Plasticity Clay ar	nd Fine Roots. Grou	ndwater									
		Seepage in Sidewalls.													
2 -												+++	++	┢╋╋	
-															
3 -															
-														┝┼┼┤	
4 -		Medium Dense, Mois	t. Brown-Grav N	/ledium Grained S	and with Trace Silt a	and						+++	++	rttt	++
-		Rounded Gravel-Cobb													
-															
5 -															
-										$\left \cdot \right + \left \cdot \right $		++++	++	\square	
6 -															
-															
7 -														┝┼┼┤	
-													+++		++
8 -															
=												$\parallel \parallel$	++	┝┼┼┤	\parallel
=															
9 -										+ +		$\{ \} \}$	++		++
-															$\uparrow\uparrow$
10 -															
10															
					Fines Content	⊗ Moi	isture Co	ntent	•	- I F	Plastic	Limit a	nd Li	quid L	_imit

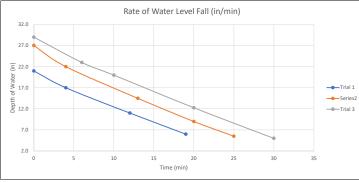

	(Branch ENGINEERING Success Civil - transporting Successful - transporting						Test		ID: ' Sheet			
Client	Colin k	Celley	Project Name:	Pine Springs D	evlopn	nent a	at the V	'illage G	reen				
Projec	t Number:		Project Location:	Row River I							-		
Date S	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR	(Check	ked By:			RJD			
Contra	actor:	Branch Engineering Inc.	Latitude:	Longitu					vatior	ו: _			
Metho	od:	Test Pit Excavation	Ground Water Levels										
Equip		Tracked Excavator											
Notes	:												
			$\mathbf{\nabla}$										
Depth	Graphic	Material Description		Samole	Dockot Don	Pocket Pen. (tsf)		MC: & PL LL:	• -1	50.0			
	aaa							10 20	30 40	1 50 6		80	30 ╂⊤
		Soft, Moist, Dark Brown Clay with Trace Silt and Orga Loose, Moist, Well Sorted Rounded Gravel, Interprete Stiff, Moist, Brown Clay with Trace Silt and Sand, Med Medium Dense, Moist, Brown-Gray Medium Grained Rounded Gravel.	ed as Drainage Rock (Fill) dium Plasticity.										
6		Medium Dense, Moist, Brown-Gray Gravel-Cobble wi	ith Minor Sand, Alluvium	1.									
8													
9													
10 -													
			Fines Content	⊗ Moisture	Conter	nt	•	■ Pla	astic Li	imit ar	ıd Liqi	uid L	imit

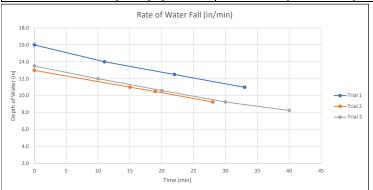
	Ć	Branch ENGINEERING WILL VERING						Те	st P			'P-3 1 of 1
Client	: <u>Colin K</u> t Number:			Pine Springs De					n			
	itarted: actor:	21-753 Feb 17 2022 Completed: Branch Engineering Inc. Test Pit Excavation	Project Location: Logged By: Latitude: Ground Water Levels	SPR Longitud	Che	cked By	ve, Oregon					
Equip: Notes	ment:	Tracked Excavator										
Depth	Graphic	Material Description		Sample	Pocket Pen. (tsf)	Ś	MC: PL L	⊗ L: ●-	-8			
	0			ŭ	Poc	Dry	10	20 30	40 5	0 60	70 80	0 90
		Soft, Moist, Dark Brown Clay with Trace Silt and Organ	ics.					+++-				
		Medium Stiff, Moist, Brown-Gray Clay with Trace Silt.										
2												
3		Medium Dense, Moist, Brown-Gray Silt, Sand, and Rou	inded Gravel-Cobble.									
4								+++				
5												
								+				
6												
7												
8												
								+++				
9												
10 -												
			\Diamond Fines Content	⊗ Moisture	Content	•	-	Plastic	: Limi	t and I	Liquid	I Limit



Infiltration Test Results Project: Pine Springs at Village Green Testing Date: 2/17/2022 BEI Project Number: 21-753 Test Type: Encased Falling Head Infiltration Time = 0 at addition of H2O

	Time = 0 at addition of H2O							
			Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 1			Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6		0	45.5	19.5			
Standpipe Height AGS (in)	8		4	50.0	15.0	1.13	67.5	
Test Depth BGS (in)	57		6	52.0	13.0	1.00	60.0	63.8
Volume of Water Added (gal)								
Clocktime at Start	11:12							
ASTM Soil Type	(GP-GC)							
			Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 2			Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	2.25		0	47.0	18.0			
Clocktime	11:19		1	48.0	17.0	1.00	60.0	
			2	49.0	16.0	1.00	60.0	
			3	50.0	15.0	1.00	60.0	
			6	52.5	12.5	0.83	50.0	57.5
			Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 3			Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-3 (in/hr)
Volume of Water Added (gal)	3.1		0	40.0	25.0			
Clocktime	11:49		2	42.5	22.5	1.25	75.0	
			4	44.5	20.5	1.00	60.0	
			6	46.5	18.5	1.00	60.0	
			8	48.5	16.5	1.00	60.0	63.8


		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 2 Trial 1		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	41.3	20.3			
Standpipe Height AGS (in)	7	10	53.0	8.5	1.18	70.5	70.5
Test Depth BGS (in)	54.5						
Volume of Water Added (gal)	2.5						
Clocktime	11:14						
ASTM Soil Type	(GP-GC)						
Infiltration Test 2 Trial 2		Elapsed Time (min)	Depth to Water Surface (in)	Depth of Water (in)	Rate of Fall (in/min)	Rate of Fall (in/hr)	AVG Rate of Fall T-2 (in/hr)
				. ,	(in/min)	(In/nr)	AVG Kate of Fall 1-2 (In/nr)
Volume of Water Added (gal)	3.4	0	34.0	27.5			
Clocktime	11:26	9	44.0	17.5	1.11	66.7	
		12	47.5	14.0	1.17	70.0	68.3
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 2 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	0.5	0	45.0	16.5			
Clocktime	11:39	1	46.5	15.0	1.50	90.0	
		2	47.8	13.7	1.30	78.0	
		3.5	49.5	12.0	1.13	68.0	
		5	51.1	10.4	1.07	64.0	
		6	52.1	9.4	1.00	60.0	67.5



Infiltration Test Results Project: Pine Springs at Village Green Testing Date: 2/17/2022 BEI Project Number: 21-753 Test Type: Encased Falling Head Infiltration Time = 0 at addition of H2O

			ddition of H2O				
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 1		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	42.0	21.0			
Standpipe Height AGS (in)	6	4	46.0	17.0	1.00	60.0	
Test Depth BGS (in)	57	12	52.0	11.0	0.75	45.0	
Volume of Water Added (gal)	2.6	19	57.0	6.0	0.71	42.9	43.9
Clocktime at Start	11:37						
ASTM Soil Type	(GP-GC)						
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 2		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	3.1	0	36.0	27.0			
Clocktime	11:57	4	41.0	22.0	1.25	75.0	
		13	48.5	14.5	0.83	50.0	
		20	54.0	9.0	0.79	47.1	
		25	57.5	5.5	0.70	42.0	46.4
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-3 (in/hr)
Volume of Water Added (gal)	3.5	0	34.0	29.0			
Clocktime	12:34	6	40.0	23.0	1.00	60.0	
		10	43.0	20.0	0.75	45.0	
		20	50.8	12.3	0.78	46.5	
		30	58.0	5.0	0.73	43.5	45.0

Infiltration Test 4 Trial 1		Elapsed Time (min)	Depth to Water Surface (in)	Depth of Water (in)	Rate of Fall (in/min)	Rate of Fall (in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	35.0	16.0			
Standpipe Height AGS (in)	6	11	37.0	14.0	0.18	10.9	
Test Depth BGS (in)	45	22	38.5	12.5	0.14	8.2	
Volume of Water Added (gal)	2	33	40.0	11.0	0.14	8.2	8.2
Clocktime	11:52						
ASTM Soil Type	(ML)						
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 4 Trial 2		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	1.6	0	38.0	13.0			
Clocktime	12:26	15	40.0	11.0	0.13	8.0	
		19	40.5	10.5	0.13	7.5	
		28	41.8	9.3	0.14	8.3	7.9
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 4 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	1.5	0	37.5	13.5			
Clocktime	12:55	10	39.0	12.0	0.15	9.0	
		20	40.4	10.6	0.14	8.4	
		30	41.8	9.3	0.14	8.1	
		40	42.8	8.3	0.10	6.0	7.9

STATE OF OREGON

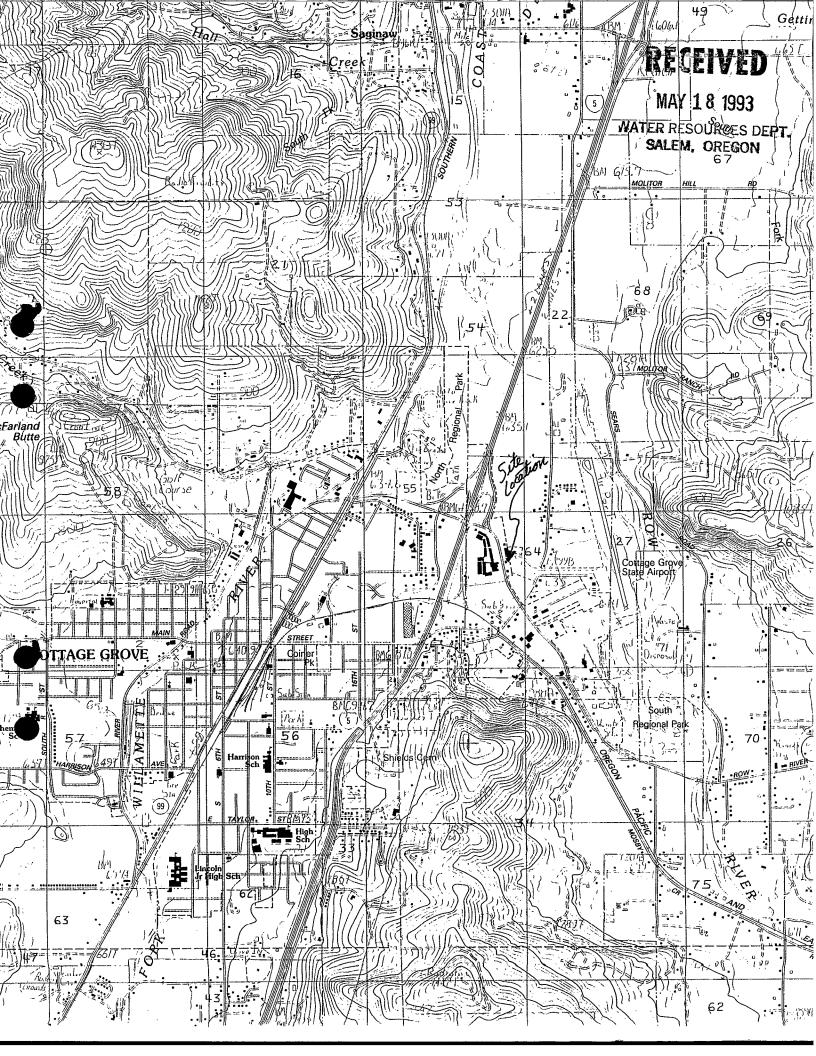
STATE ENGINEER, SALEM, OREGON 21 ENCINEER Please type or print) within 30 days from the date of well completion. SALEM. ORLECCoo not write above this line)

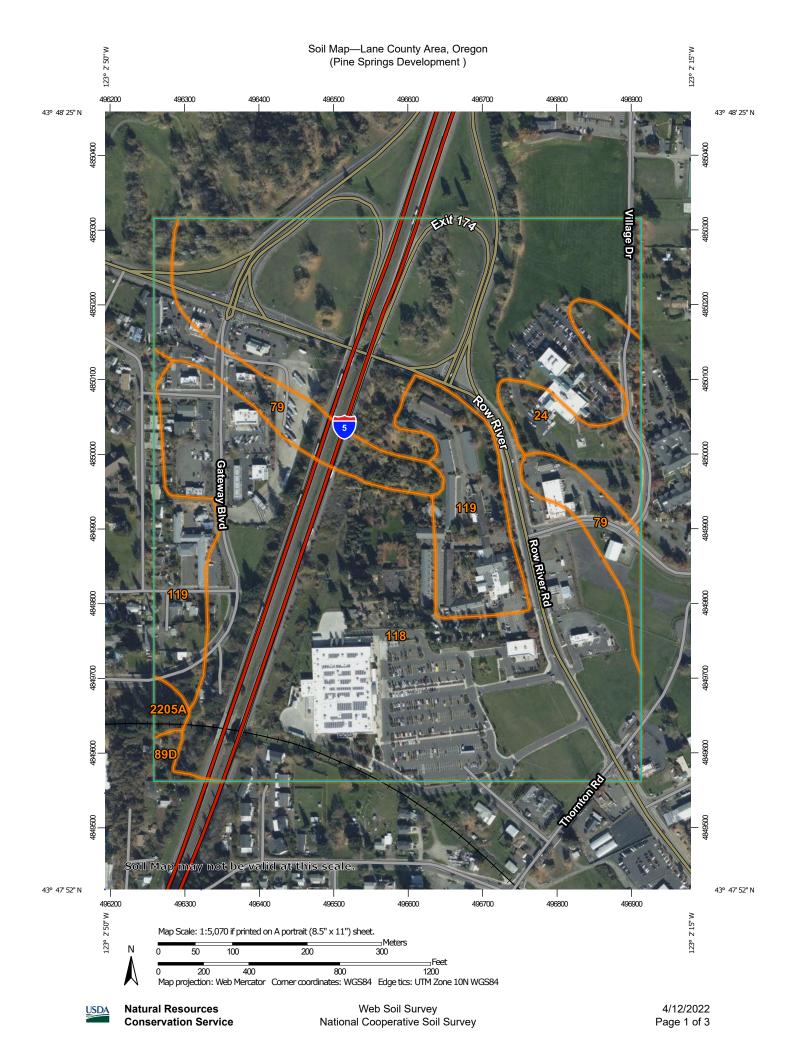
	· · · · · · · · · · · · · · · · · · ·	
(1) OWNER:	(10) LOCATION OF WELL:	
Name Pruitt Mink Farm	County Lane Driller's well nu	mber
Address Rt 1 Box 61 Cottage Grove, Oregon	34 34 Section 27 20S	<u>в. 3W w.м.</u>
	Bearing and distance from section or subdivision	on corner
(2) TYPE OF WORK (check):		<u> </u>
New Well 🕅 Deepening 🗌 Reconditioning 🗋 Abandon 🗌	the second se	
If abandonment, describe material and procedure in Item 12.	(11) WATER LEVEL: Completed w	ell.
(3) TYPE OF WELL: (4) PROPOSED USE (check):	Depth at which water was first found 47	ft.
Rotary X Driven Domestic X Industrial Municipal Cable Detted Detted	Static level 19 ft. below land s	urface. Date 9-30-7.
Dug 🔲 Bored 🗌 Irrigation 🗌 Test Well 🗌 Other 🔲	Artesian pressure lbs. per squar	e inch. Date
CASING INSTALLED: Threaded U Welded " Diam. from 0 ft. to 242 ft. Gage .250 " Diam. from ft. to ft. Gage " Diam. from ft. to ft. Gage PERFORATIONS: Perforated? U Yes X No.	(12) WELL LOG: Diameter of well h Depth drilled 55 ft. Depth of comple Formation: Describe color, texture, grain size a and show thickness and nature of each stratur with at least one entry for each change of format position of Static Water Level and indicate prim	eted well 55 ft. and structure of materials; n and aquifer penetrated, tion. Report each change in
e of perforator used	MATERIAL	From To SWL
Size of perforations in. by in.	Brown Top Soil	0 1
perforations from ft. to ft.	Clay & Gravel	1 19
perforations from ft. to ft.	Blue Claystone	19 46
	Black Samdstone	46 48
	Lavender Claystone	48 55
(7) SCREENS: Well screen installed? Yes X No		
Manufacturer's Name		
Type Model No.	аны. Баларанан (р. 1996) Саларанан (р. 1996)	
Diam Slot size Set from ft. to ft.		
Diam Slot size Set from ft. to ft.		
(8) WELL TESTS: Drawdown is amount water level is lowered below static level		
Was a pump test made? [] Yes X No If yes, by whom?	·	
Yield: gal./min. with ft. drawdown after hrs.		
		·····
Tested with air estimated 5 GPM could fluctuate		
EXAMPLE gal./min. with 36 ft. drawdown after 1 hrs.		
Artesian flow g.p.m.		
7 perature of water Depth artesian flow encountered ft.	Work started 9-29-71 19 Complete	
CONSTRUCTION:	Date well drilling machine moved off of well	<u>9-20-71 ₁₉</u>
Well seal-Material used <u>Cement Grout</u>	Drilling Machine Operator's Certification: This well was constructed under my Notesial under information moneted	direct supervision.
Diameter of well bore to bottom of seal	Materials used and information reported best knowledge and belief.	
Diameter of well bore below seal	[Signed] Corsey In Outries	Date 10-5-71,19
Number of sacks of cement used in well seal		
Number of sacks of bentonite used in well seal sacks	Drilling Machine Operator's License No.	
Brand name of bentonite	Water Well Contractor's Certification:	
Number of pounds of bentonite per 100 gallons		otion and this second to
of water lbs./100 gals.	This well was drilled under my jurisdi true to the best of my knowledge and bel	
Was a drive shoe used? 🕱 Yes 🗋 No Plugs	Name Casey Jones Well D illi	
Did any strata contain unusable water? 🔲 Yes 🕼 No	(Person, firm or corporation)	(Type or print)
Type of water? depth of strata	Address Route 7 Box 695 Pleasa	nt Hill, Oregon
Method of sealing strata off	reiman the hont - 1 (Lana.	· _ ~
Was well gravel packed? [] Yes []XNo Size of gravel:	[Signed] A. A. A. A. A. Water Well Contr	actor)
Gravel placed from	Contractor's License No	10-5-71, 19
10, U		

(USE ADDITIONAL SHEETS IF NECESSARY)

SP*45656-119

æ• . . -----




.

NOTICE TO WATER WELL GONERATOR IVE DATER WELL The original and first copy of the port EIVE DATER WELL are to be filed with the	L REPORT	and on i
WATER RESOURCES DEPARTMENT 2 9 1977 STATE OF SALEM, OREGON 97310 STATE OF within 30 days from the date of well completion. LER RESOURCES DEport write at	OREGON	203/3w-276d
SALEM. OREGON		
(1) OWNER:	(10) LOCATION OF WELL:	· 36 -
Name Loyde tHueAtt	County LANC Driller's well n	
Address 78960 Thorn Ton Rd	SE 14 N. W 1/4 Section 27 T. 205	<u>в. З<i>w</i>. w.м.</u>
(2) TYPE OF WORK (check):	Bearing and distance from section or subdivis	ion corner
New Well Y Deepening Reconditioning Abandon	2/4	
If abandonment, describe material and procedure in Item 12.		
(3) TYPE OF WELL: (4) PROPOSED USE (check):	(11) WATER LEVEL: Completed w	
Rotary C Driven C	Depth at which water was first found	<u>35</u> <u>ft.</u>
Cable S Jetted D Domestic Municipal	Static level /O ft. below land a	surface. Date 8-/8-17
Dug Bored Irrigation Test Well Other I	Artesian pressure lbs. per squar	re inch. Date
CASING INSTALLED: Threaded D Welded \$ " Diam. from # 1 ft. to 52 ft. Gage 1250	(12) WELL LOG: Diameter of well Depth drilled - ケラー ft. Depth of comp	~~~~
1. Gage	· · · · · · · · · · · · · · · · · · ·	
PERFORATIONS: Perforated? Ves N No.	Formation: Describe color, texture, grain size and show thickness and nature of each stratu with at least one entry for each change of forma position of Static Water Level and indicate pri	im and aquifer penetrated,
Type of perforator used	MATERIAL	From To SWL
Size of perforations in. by in.	DirT	0 /
perforations from ft. to ft.	CLAY +Gravel	1 20
perforations from ft. to ft.	Cemented Grarel	20 57 10
ft. to ft.		
(7) SCREENS: Well screen installed?		
Manufacturer's Name		
Diam. Slot size	······································	· · · · ·
Diam Slot size Set from ft. to ft.		······································
(8) WELL TESTS: Drawdown is amount water level is lowered below static level		
Was a pump test made? MY Yes I No If yes, by whom? Drille, Y		
vield: <u>3</u> gal./min. with 40 ft. drawdown after 4 hrs.		
<u> </u>		
· · · · · · · · · · · · · · · · · · ·		····
Bailer test gal./min. with ft. drawdown after hrs.		
Artesian flow g.p.m.		
perature of water Depth artesian flow encountered ft.	Work started 8-17 1977 Complet	ed 8-19 1977
(y) CONSTRUCTION:	Date well drilling machine moved off of well	8-19 1977
Well seal-Material used <u>Cement</u>	Drilling Machine Operator's Certification:	· · · · · ·
Well sealed from land surface to	This well was constructed under my	direct supervision.
Diameter of well bore to bottom of seal $\frac{10}{10}$ in.	Materials used and information reported best knowledge and belief.	above are true to my
Diameter of well bore below seal		Date 8-20 1977
Number of sacks of cement used in well seal	[Signed] <u>(Drilling Machine Operator</u>)	C) C/
How was cement grout placed? Poured	Drilling Machine Operator's License No.	- 5.2.7
	Water Well Contractor's Certification:	-
	This well was drilled under my jurisd true to the best of my knowledge and be	
Was a drive shoe used? 🕎 Yes 🗍 No Plugs	Name Im may are	Chrilling.
Did any strata contain unusable water? 🗌 Yes 🙀 No	(Person, firm or corporation)	(Type or print)
Type of water? depth of strata	Address Oper 875 Cord	aguttor
Method of sealing strata off	[Signed] 2mm may	-
Was well gravel packed? [] Yes 🕅 No Size of gravel:	(Water Well Cont	
Gravel placed from ft. to ft.	Contractor's License No	2-20-, 1977
(USE ADDITIONAL SE	IEETS IF NECESSARY)	SP*45656-119

STATE OF OREGON JUN - 1 19 WATER WELL REPORT (as required by ORS 537.765) WATER RESOURCE		(START CARD) $\#W$	41735		~
SALEN, CALC	11				
(1) OWNER: Well Number #/		OF WELL by legal			
Address 3800 Bennett Creek Rd.		SN or S. Range_3			
City Cottage Grove State OR Zip 97424	Section <u>27</u>	<u>NE</u>	¼ <u>SW</u>	1/4	_
(2) TYPE OF WORK:		08 LotBlock_			
Image: New Well Deepen Recondition X Main Abandon (3) DRILL METHOD:		of Well (or nearest address)			
Image: State of the state o		ATER LEVEL:	<u>ge Grove</u>		
□ Other		ft. below land surface.	Date	<u>e 4-3</u>	0
(4) PROPOSED USE:		e lb. per sq		e	
Domestic Community Industrial Irrigation	(11) WATER B	EARING ZONES:			
Image: Thermal Injection Other (5) BORE HOLE CONSTRUCTION:	Depth at which wat	er was first found <u>250</u>	\ T		
Special Construction approval Yes No Depth of Completed Well 298 ft.					
Explosives used Yes XX No Type Amount	From	То	Estimated Flo		
HOLE SEAL Amount	250'	255'	3½ g	pm	-
Diameter From To Material From To sacks or pounds 10" 0 37' Cement 0 240' 3 yards					+
- 10 0 37 Cement 0 240 5 yards	-				+
	(12) WELL LC)G:			
	-		ion		
How was seal placed: Method $\square A \square B \boxtimes C \square D \square E$		Manufat			Т
Backfill placed from ft. to ft Material	Topsoil	Material	From O	To 3!	+
Gravel placed from ft. to ft. Size of gravel	Gravel &	sand	31	291	T
(6) CASING/LINER:	Brown con	nglomerate	291	50'	
Diameter From To Gauge Steel Plastic Welded Threaded		een claystone		90'	
Casing:		aystone		100'	
		vstone	100		
		en claystone ystone		230	
Liner:		en claystone	235'		
	Basalt		260'	1	
Final location of shoe(s)	Blue, gro	<u>een claystone</u>	<u>270'</u>	298	+
Perforations Method		······································			+
Screens Type Material	_ _				T
Slot Tele/pipe				<u> </u>	
From To size Number Diameter size Casing Liner					
	•. •. • • •				┿
		······································		1	+
					1
	_			<u> </u>	1
(8) WELL TESTS: Minimum testing time is 1 hour		4 00 00 5			
Pump Bailer X Air Flowing	Date started	<u>4–28–92</u> Con Well Constructor Certific		0 <u>-92</u>	_
-	I certify that th	e work I performed on the	construction, alter	ration, or	: al
	ment of this well is used and information	in compliance with Oregon von reported above are true to	vell construction s o my best knowle	tandards.	. M bel
<u>3 ½</u> 277' 298' (1 hr.	- 11 - 1			Number _	
	Signed	a Mr		Number	
		ell Constructor Certification			
Temperature of Water Depth Artesian Flow Found	I accept respons	sibility for the construction,	alteration, or aban	Idonment	w
Was a water analysis done? Yes By whom not tested	formed on this well	during the construction dates a compliance with Oregon we	s reported above. A	All work	pei
Did any strata contain water not suitable for intended use?	is true to the best of	of my knowledge and belief.			
	I //	\sim	WWC	Number_	

IONITORING WELL RI s required by ORS 537.765 & OAR 694	0-240-093) <	MAY 18 1		Sta	rt Card #	/ w-5	0314 /	· · · · · · · · · · · · · · · · · · ·	
) OWNER/PROJECT:	WELL NO	<i>J</i> .	(0) 1	LOCATION		LL By leg	al descript	ion	
 Kris Woodward, KCW 	Properti	es WATER RESOUR	ESw	Location: Cou	nty	Lan			
ress P. O. Box 10666		SALEM, OR	GON	-			-		27
	Oregon	<u>zip 97440</u>	1 2. \$	<u>SE</u> 1/ Street address of			of above secti ow River		
TYPE OF WORK:		Decentricity				Cotta	ge Grove		97424
	epair _	Recondition Abandonment		Fax lot number o ATTACH MAP					· · ·
DRILLING METHOD									·
	otary Mud	Cable	(1)	STATIC WA 8' Ft. be			Date 4-2	20-93	-
Hollow Stem Auger O	ther		-	Artesian Pressur	elb	/sq. in.	Date	. 	
BORE HOLE CONSTRUC	TION								
Yes No Decial Standards	1 6 1. 4 1	(Not a well)		WATER BE Depth at which v			81		
pecial Standards 🗌 🔀 Dept	h of completed			From	To		ow Rate	SW	 /L
Vault		Land surface	-	8'	12'		>1 gpm		
$\sum_{ft.}$							- 89		
$\downarrow_{o} \prec$		Surface flush vault							
		Locking cap	·· .						
		Casing	(9)	WELL LOG		Ground elev	ation <u>635</u> '		
		diameterin.	(\mathcal{I})	Materi			From	То	SWL
	10X	material <u>––</u> Welded Threaded Glued							SWL
	1 m			Asphalt		C + 1 1	0	2"	
Seal	AD A	Liner diameter — in.		Crushed	<u>rock</u>	<u>EILL</u>	2"	10"	
ft. 0.000000000000000000000000000000000	h Sa	material		Brown s	andy a	raval	10"	10'	
$\downarrow o \prec \qquad \bigcirc \qquad$		Welded Threaded Glued		moist		Laver,	10	10	
-ft.) O					<u>•</u>				
	SN.	Well seal: Material Bentonite	<u> </u>	Silty c	lav ma	trix	10'	12'	
	1.0)	Amount 3/8" (200	<u>lb</u> s)		, w/col				
	10	Borehole diameter			6", w				
	1 ser	<u> </u>							
		Bentonite plug at least 2 ft. t	hick						
	₹() -								
Filter	\Box	Screen							
pack DO	$d\mathcal{D}$	material <u>–––</u> interval(s):				<u></u>			
	N K	From To							
	$\langle \mathcal{M} \rangle$	From <u> </u>			·				
	~ 100	Material			-	4/20/93	l	4/20/9	0.2
		Sizein.	,	Date started			-	4/20/	<u>,</u> ,
WELL TEST:			(un	bonded) Monitor [certify that the	r Well Cons work I perfo	brmed on the	construction,	alteration, or	
Pump Bailer	Air	Flowing Artesian	aba	ndonment of this	s well is in c	ompliance w	ith Oregon we	ell construction	on
Permeability	Yield	GPM_		idards. Material		monnation r	sponea above	are true to th	ie dest
Conductivity	PH			Ū.				WC Number	
		ian flow foundft.		ned				te	
Was water analysis done? XX Yes		1		nded) Monitor V I accept responsi				r abandonme	ent
By whom? <u>Pacific Nort</u> Depth of strata to be analyzed. From			wo	rk performed on	this well-du	ring the cons	truction dates	reported abo	ve. All
Remarks:			ŴO	rk performed du idards. This rep	ing this tim	e is in compl	iance with Ore	egon well con and belief	nstruction
		····	ાતા	indias. Interop	1 L-		M	WC Number	10200

Area of Interest (AOI) Spoil Area Area of Interest (AOI) Stony Spot Soils Very Stony Spot Soil Map Unit Polygons Wet Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soil Map Unit LinesOtherSoil Map Unit PointsSpecial Line FeaturesSpecial Point FeaturesWater FeaturesImage: Borrow PitImage: Streams and CanalsImage: Clay SpotStreams and CanalsImage: Clay SpotInterstate HighwaysImage: Clay SpotImage: Streams and CanalsImage: Clay Spot <t< th=""><th> Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 30, 2019—Nov 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor </th></t<>	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 30, 2019—Nov 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
24	Chapman loam	6.0	4.9%
79	McBee silty clay loam	9.4	7.7%
89D	Nekia silty clay loam, 12 to 20 percent slopes	0.6	0.5%
118	Salem gravelly silt loam	92.7	75.8%
119	Salem-Urban land complex	13.0	10.6%
2205A	Conser silty clay loam, 0 to 3 percent slopes	0.7	0.5%
Totals for Area of Interest		122.4	100.0%

Lane County Area, Oregon

79—McBee silty clay loam

Map Unit Setting

National map unit symbol: 238x Elevation: 100 to 2,500 feet Mean annual precipitation: 36 to 60 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 150 to 210 days Farmland classification: Prime farmland if protected from flooding or not frequently flooded during the growing season

Map Unit Composition

Mcbee and similar soils: 85 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mcbee

Setting

Landform: Flood plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Recent mixed alluvium

Typical profile

H1 - 0 to 24 inches: silty clay loam H2 - 24 to 41 inches: silt loam H3 - 41 to 62 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 24 to 36 inches Frequency of flooding: FrequentNone Frequency of ponding: None Available water supply, 0 to 60 inches: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C Ecological site: F002XC003OR - Low Floodplain Group Forage suitability group: Moderately Well Drained < 15% Slopes (G002XY004OR)

USDA

Other vegetative classification: Moderately Well Drained < 15% Slopes (G002XY004OR) Hydric soil rating: No

Minor Components

Wapato

Percent of map unit: 3 percent Landform: Flood plains Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

Lane County Area, Oregon

118—Salem gravelly silt loam

Map Unit Setting

National map unit symbol: 2340 Elevation: 300 to 800 feet Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 165 to 210 days Farmland classification: All areas are prime farmland

Map Unit Composition

Salem and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Salem

Setting

Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Gravelly mixed alluvium

Typical profile

H1 - 0 to 7 inches: gravelly silt loam
H2 - 7 to 26 inches: gravelly clay loam
H3 - 26 to 60 inches: very gravelly sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: R002XC006OR - Stream Terrace Group Forage suitability group: Well drained < 15% Slopes (G002XY002OR) Other vegetative classification: Well drained < 15% Slopes (G002XY002OR)

USDA

Hydric soil rating: No

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

Lane County Area, Oregon

119—Salem-Urban land complex

Map Unit Setting

National map unit symbol: 2341 Elevation: 300 to 800 feet Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 165 to 210 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Salem and similar soils: 50 percent Urban land: 40 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Salem

Setting

Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Gravelly mixed alluvium

Typical profile

H1 - 0 to 7 inches: gravelly silt loam
H2 - 7 to 26 inches: gravelly clay loam
H3 - 26 to 60 inches: very gravelly sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: R002XC006OR - Stream Terrace Group Forage suitability group: Well drained < 15% Slopes (G002XY002OR) Other vegetative classification: Well drained < 15% Slopes (G002XY002OR)

USDA

Hydric soil rating: No

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: No

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

APPENDIX B:

Recommended Earthwork Specifications

GEOTECHNICAL SPECIFICATIONS

General Earthwork

- 1. All areas where structural fills, fill slopes, structures, or roadways are to be constructed shall be stripped of organic topsoil and cleared of surface and subsurface deleterious material, including but limited to vegetation, roots, or other organic material, undocumented fill, construction debris, soft or unsuitable soils as directed by the Geotechnical Engineer of Record. These materials shall be removed from the site or stockpiled in a designated location for reuse in landscape areas if suitable for that purpose. Existing utilities and structures that are not to be used as part of the project design or by neighboring facilities, shall be removed or properly abandoned, and the associated debris removed from the site.
- 2. Upon completion of site stripping and clearing, the exposed soil and/or rock shall be observed by the Geotechnical Engineer of Record or a designated representative to assess the subgrade condition for the intended overlying use. Pits, depressions, or holes created by the removal of root wads, utilities, structures, or deleterious material shall be properly cleared of loose material, benched and backfilled with fill material approved by the Geotechnical Engineer of Record compacted to the project specifications.
- 3. In structural fill areas, the subgrade soil shall be scarified to a depth of 4-inches, if soil fill is used, moisture conditioned to within 2% of the materials optimum moisture for compaction, and blended with the first lift of fill material. The fill placement and compaction equipment shall be appropriate for fill material type, required degree of blending, and uncompacted lift thickness. Assuming proper equipment selection, the total uncompacted thickness of the scarified subgrade and first fill lift shall not exceed 8-inches, subsequent lifts of uncompacted fill shall not exceed 8-inches unless otherwise approved by the Geotechnical Engineer of Record. The uncompacted lift thickness shall be assessed based on the type of compaction equipment used and the results of initial compaction testing. Fine-grain soil fill is generally most effectively compacted using a kneading style compactor, such as a sheeps-foot roller; granular materials are more effectively compacted using a smooth, vibratory roller or impact style compactor.
- 4. All structural soil fill shall be well blended, moisture conditioned to within 2% of the material's optimum moisture content for compaction and compacted to at least 90% of the material's maximum dry density as determined by ASTM Method D-1557, or an equivalent method. Soil fill shall not contain more than 10% rock material and no solid material over 3-inches in diameter unless approved by the Geotechnical Engineer of Record. Rocks shall be evenly distributed throughout each lift of fill that they are contained within and shall not be clumped together in such a way that voids can occur.
- 5. All structural granular fill shall be well blended, moisture conditioned at or up to 3% above of the material's optimum moisture content for compaction and compacted to at least 90% of the material's maximum dry density as determined by ASTM Method D-1557, or an equivalent method. 95% relative compaction may be required for pavement base rock or in upper lifts of the granular structural fill where a sufficient thickness of the fill section allows for higher compaction percentages to be achieved. The granular fill shall not contain solid particles over 2-inches in diameter unless special density testing methods or proof-rolling is approved by the Geotechnical Engineer of Record. Granular fill is generally considered to be a crushed aggregate with a fracture surface of at least 70% and a maximum size not exceeding 1.5-inches in diameter, well-graded with less than 10%, by weight, passing the No. 200 Sieve.
- 6. Structural fill shall be field tested for compliance with project specifications for every 2-feet in vertical rise or 500 cy placed, whichever is less. In-place field density testing shall be performed by a competent individual, trained in the testing and placement of soil and aggregate fill placement, using either ASTM Method D-1556/4959/4944 (Sand Cone), D-6938 (Nuclear Densometer), or D-2937/4959/4944 (Drive Cylinder). Should the fill materials not be suitable for testing by the above methods, then observation of placement, compaction and proof-rolling with a loaded 10 cy dump-truck, or equivalent ground pressure equipment, by a trained individual may be used to assess and document the compliance with structural fill specifications.

Utility Excavations

- 1. Utility excavations are to be excavated to the design depth for bedding and placement and shall not be over-excavated. Trench widths shall only be of sufficient width to allow placement and proper construction of the utility and backfill of the trench.
- 2. Backfilling of a utility trench will be dependent on its location, use, depth, and utility line material type. Trenches that are required to meet structural fill specifications, such as those under or near buildings, or within pavement areas, shall have granular material strategically compacted to at least the spring-line of the utility conduit to mitigate pipeline movement and deformation. The initial lift thickness of backfill overlying the pipeline will be dependent on the pipeline material, type of backfill, and the compaction equipment, so as not to cause deflection or deformation of the pipeline. Trench backfill shall conform to the General Earthwork specifications for placement, compaction, and testing of structural fill.

Geotextiles

1. All geotextiles shall be resistant to ultraviolet degradation, and to biological and chemical environments normally found in soils. Geotextiles shall be stored so that they are not in direct sunlight or exposed to chemical products. The use of a geotextile shall be specified and shall meet the following specification for each use.

Subgrade/Aggregate Separation

Woven or nonwoven fabric conforming to the following physical properties:

•	Minimum grab tensile strength	ASTM Method D-4632	180 lb
•	Minimum puncture strength (CBR)	ASTM Method D-6241	371 lb
•	Elongation	ASTM Method D-4632	15%
•	Maximum apparent opening size	ASTM Method D-4751	No. 40
•	Minimum permittivity	ASTM Method D-4491	$0.05 \mathrm{S}^{-1}$

Drainage Filtration

Woven fabric conforming to the following physical properties:

•	Minimum grab tensile strength	ASTM Method D-4632	110 lb
•	Minimum puncture strength (CBR)	ASTM Method D-6241	220 lb
•	Elongation	ASTM Method D-4632	50%
•	Maximum apparent opening size	ASTM Method D-4751	No. 40
•	Minimum permittivity	ASTM Method D-4491	0.5 S ⁻¹

Geogrid Base Reinforcement

Extruded biaxially or triaxially oriented polypropylene conforming to the following physical properties:

•	Peak tensile strength lb/ft	ASTM Method D-6637	925
•	Tensile strength at 2% strain lb/ft	ASTM Method D-6637	300
•	Tensile strength at 5% strain lb/ft	ASTM Method D-6637	600
•	Flexural Rigidity Effective Opening Size rock size	ASTM Method D-1388 ASTM Method D-4751	250,000 mg-cm 1.5x

PRELIMINARY TITLE REPORT

CASCADE ESCROW ATTN: NADJA JUDISH 811 WILLAMETTE STREET EUGENE, OR 97401 February 22, 2023 Report No: 0338491 Your No: EU23-0222 Seller: REFINANCE Buyer: PINE SPRINGS, LLC

PRELIMINARY REPORT FOR:Commercial Extended Loan Policy\$T/C

PREMIUMS:

Commercial Extended Loan Premium \$T/C OTIRO 209.10-06 Restrict., Encroach., Minerals Endorsement\$TBD OTIRO 222-06 Location Endorsement \$TBD OTIRO 208.2-06 Commercial Environmental Lien Endorsement \$TBD Gov. Lien/Inspect Fee \$35.00 Temporary Billing \$225.00

We are prepared to issue 2006 (6/17/06) ALTA title insurance policy(ies) in the usual form insuring the title to the land described as follows:

Parcels 1 and 2, LAND PARTITION PLAT NO. 97-P0984, filed May 7, 1997, Lane County Oregon Plat Records, in Lane County, Oregon.

Vestee:

PINE SPRINGS, LLC, an Oregon Limited Liability Company

Estate:

FEE SIMPLE

DATED AS OF: FEBRUARY 15, 2023 at 8:00 A.M.

Schedule B of the policy(ies) to be issued will contain the following general and special exceptions unless removed prior to issuance:

GENERAL EXCEPTIONS (Standard Coverage Policy Exceptions):

- 1. Taxes or assessments which are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records; proceedings by a public agency which may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records.
- 2. Facts, rights, interests or claims which are not shown by the Public Records but which could be ascertained by an inspection of the Land or by making inquiry of persons in possession thereof.

No liability is assumed hereunder until policy has been issued and full policy premium has been paid.							
MAIN OFFICE FLORENCE OFFICE VILLAGE PLAZA OFFICE							
811 WILLAMETTE ST.	715 HWY 101 * FLORENCE, OREGON 97439	4750 VILLAGE PLAZA LOOP SUITE 100					
EUGENE, OREGON 97401	MAILING: PO BOX 508 * FLORENCE, OREGON 97439	EUGENE, OREGON 97401					
PH: (541) 687-2233 * FAX: (541) 485-0307	PH: (541) 997-8417 * FAX: (541) 997-8246	PH: (541) 653-8622 * FAX: (541) 844-1626					

Order No. 0338491 Page 2

- Easements, or claims of easement, not shown by the Public Records; reservations or exceptions in patents or in Acts authorizing the issuance thereof; water rights, claims or title to water.
- 4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land.
- 5. Any lien, or right to a lien, for services, labor, material, equipment rental or workers compensation heretofore or hereafter furnished, imposed by law and not shown by the Public Records.

SPECIAL EXCEPTIONS:

- 6. City liens, if any, as levied by the City of Cottage Grove, for which no search was made. (The City of Cottage Grove charges \$15.00 for a lien search on each tax lot number. Please inform us if one is to be ordered.)
- 7. Rights of the public in and to that portion lying within streets, roads and highways.
- 8. Rights of the public in and to that portion within the bounds of County Road No. 218. This 30 foot roadway runs Northerly along the East line of the John Cochran Donation Land Claim No. 55, in Township 20 South, Range 3 West of the Willamette Meridian. Established in 1861, this road has apparently been long abandoned, but there is no record of vacation.
- 9. An Easement for power lines, including the terms and provisions thereof, granted Mountain States Power Company, by instrument dated September 26, 1947, recorded November 1, 1947, Reception No. B359 P651, Lane County Oregon Deed Records. (Blanket Easement)
- 10. Relinquishment of access restriction contained in Deeds to the State of Oregon, by and through its State Highway Commission, including the terms and provisions thereof, recorded August 25, 1954, Reception No. 1954-036878, and recorded May 26, 1954, Reception No. 1954-030356, and recorded February 1, 1960, Reception No. 1960-089751, and recorded July 2, 1954, Reception No. 1954-033067, and recorded January 29, 1960, Reception No. 1960-089622, Lane County Oregon Deed Records.
- 11. Billboard restriction contained in Deed from the State of Oregon, by and through its State Highway Commission, to Woodward Hotels, Inc., an Oregon Corporation, including the terms and provisions thereof, recorded February 1, 1960, Reception No. 1960-089751, Lane County Oregon Deed Records.
- 12. An Easement for power line and road, including the terms and provisions thereof, granted Pacific Power and Light Company, by instrument dated September 26, 1960, recorded October 7, 1960, Reception No. 1960-012216, Lane County Oregon Deed Records. (Blanket Easement)
- Right of way easement, including the terms and provisions thereof, as granted to Pacific Power & Light Company, by instrument recorded January 17, 1973, Reception No. 1973-002422, Lane County Official Records. (30 feet in width along a portion adjacent to Interstate Five, I-5)
- 14. Agreement, including the terms and provisions thereof, between the City of Cottage Grove, and Village Green Motor Hotel, recorded July 8, 1987, Reception No. 1987-029291, Lane County Official Records.

Order No. 0338491 Page 3

- Cottage Grove Urban Renewal Plan, including the terms and provisions thereof, Ordinance No. 2501, recorded June 26, 1984, Reception No. 1984-026698 and Ordinance No. 2689, recorded September 24, 1991, Reception No. 1991-046061, Lane County Official Records.
- 16. Terms and provisions of that appurtenant easement agreement dated September 5, 1996, between Zed Corporation, an Oregon corporation, and K.C.W. Properties LTD., an Oregon limited partnership, recorded September 9, 1996, Reception No. 1996-060542, Lane County Official Records.
- Easement agreement, including the terms and provisions thereof, disclosed by instrument recorded May 5, 1997, Reception No. 1997-030223, Lane County Official Records.
- Easements, notes, conditions, restrictions and dedications as shown, set forth, and/or delineated on the recorded Land Partition Plat No. 97-P0984, recorded in Reception No. 1997-P0984, Lane County Oregon Plat Records.
- 19. Deed of Trust, including the terms and provisions thereof, executed by Pine Springs, LLC, an Oregon limited liability company, Grantor, to Cascade Title Company, Trustee, for the benefit of Summit Bank, Beneficiary, dated September 14, 2021, recorded September 30, 2021, Reception No. 2021-062998, Lane County Deeds and Records, to secure payment of a note for \$2,160,000.00.
- 20. Assignment of rents due or to become due and accruing from said property, including the terms and provisions thereof, between Pine Springs, LLC, an Oregon limited liability company, and Summit Bank, dated September 14, 2021, recorded September 30, 2021, Reception No. 2021-062999, Lane County Deeds and Records.
- 21. Amendments or modifications, if any, to the Operating Agreement of Pine Springs, LLC, subsequent to September 30, 2021, should be furnished to Cascade Title Company for the purpose of ascertaining members authorized to execute on behalf of the Limited Liability Company.
- 22. The rights of tenants holding under unrecorded leases.
- 23. This report does not include a search for financing statements filed in the office of the Secretary of State, or in a County other than the County wherein the premises are situated, and no liability is assumed if a financing statement is filed in the office of the County Clerk covering fixtures, equipment and/or personal property on the premises wherein the lands are described other than by metes and bounds or under the rectangular survey system.
- 24. Any lien, or right to a lien, for services, labor, material, equipment rental or workers compensation heretofore or hereafter furnished, imposed by law and not shown by the Public Records.
- 25. Prior to writing an ALTA MORTGAGEE'S policy, Cascade Title Company should be furnished with a statement as to parties in possession and as to any construction, alterations or repairs to the premises within the last 75 days. We also request that we be notified in the event that any funds are to be used for construction, alterations or repairs. Exception may be taken to such matters as may be shown thereby.
- 26. An accurate survey of these premises showing boundary lines, and location of improvements and easements, should be furnished for our file prior to our writing an ALTA Mortgagee's Policy. Exception may be taken to such matters as may be shown thereby.
- NOTE: The property address as shown on the Assessor's Roll is:

725 Row River Road Cottage Grove, OR 97424 Order No. 0338491 Page 4

NOTE: Taxes, Account No. 1597572, Assessor's Map No. 20 03 27 2 0, #3701, Code 45-00, 2022-2023, in the amount of \$10,462.38, PAID IN FULL. Taxes, Account No. 1088507, Assessor's Map No. 20 03 27 2 0, #3702, Code 45-00, 2022-2023, in the amount of \$41,646.38, PAID IN FULL.

NOTE: A judgment search has been made on the above named Vestee(s), and we find NONE except as set forth above.

NOTE: According to the public record, the following deed(s) affecting the property herein described have been recorded within 24 months of the effective date of this report:

Warranty Deed recorded September 30, 2021, Reception No. 2021-062997, Lane County Deeds and Records.

NOTE: The premium amount has been reduced by application of a reissue rate.

This report is preliminary to the issuance of a policy of title insurance and shall become null and void unless a policy is issued and the full premium paid.

Cascade Title Co.

rmh: Title Officer: DEBBIE FORSTROM

EXHIBIT F

PINE SPRINGS AT VILLAGE GREEN Traffic Impact Analysis

COTTAGE GROVE, OREGON

Match 10, 2022

Traffic Impact Analysis

PINE SPRINGS AT VILLAGE GREEN

Cottage Grove, Oregon March 10, 2021

Kelly Sandow PE

SANDOW

ENGINEERING

160 Madison Street, Suite A Eugene Oregon 97402 541.513.3376 sandowengineering.com

project # 5888

EXECUTIVE SUMMARY

This report provides the Traffic Impact Analysis and findings prepared for the Pine Springs at Village Green in Cottage Grove, Oregon. The subject site is located at tax lots 3701 and 3702 of Assessor's Map 20-03-27-20.

This proposal is to replace a portion of the existing hotel with apartments and to expand the existing RV Park on site.

Access to the site is currently from an access that aligns with Jim Wright Way and an access at the south end of the site. The existing access connections will be maintained.

The analysis evaluates the transportation impacts per ODOT criteria, evaluating adjacent roadway and intersection operations.

FINDINGS

The following report recommendations are based on the information and analysis documented in this report.

- The addition of development trips does not trigger intersection mitigation.
- The addition of development trips does not increase queuing conditions at the study area intersections.
- The site accesses will operate safely and efficiently for all modes of travel.
- A separate striped northbound left turn lane is recommended at the site's north/main access.
- A traffic signal is not warranted at the intersection of Row River Road at the main site entrance/Jim Wright way

SANDOW ENGINEERING

CONTENTS

1.0	BACKGROUND	4
1	.1 SITE INFORMATION	4
1	.2 DEVELOPMENT PROPOSAL	4
1	.3 ANALYSIS SCOPE FIGURE 1- VICINITY MAP AND SITE LOCATION	
2.0	EXISTING ROADWAY CONDITIONS	6
2	.1 STREET NETWORK TABLE 1: ROADWAY CHARACTERISTICS WITHIN STUDY AREA	
2	.2 STUDY INTERSECTIONS	6
2	.3 CRASH ANALYSIS TABLE 2: INTERSECTION CRASH RATES FIGURE 2- LANE CONFIGURATION AND TRAFFIC CONTROL	7
3.0	DEVELOPMENT TRIP GENERATION AND DISTRIBUTION	9
3	.1 DEVELOPMENT TRIP GENERATION TABLE 3: TRIP GENERATION- PM PEAK HOUR TABLE 4: TRIP GENERATION- AM PEAK HOUR TABLE 5: TRIP GENERATION- DAILY TRIPS	9 9
3	.2 DEVELOPMENT TRIP DISTRIBUTION FIGURE 3: AM PEAK HOUR DEVELOPMENT TRIPS FIGURE 4: PM PEAK HOUR DEVELOPMENT TRIPS	11
4.0	BACKGROUND TRAFFIC VOLUMES	.13
4	.1 INTERSECTION COUNTS	.13
4	.2 ADJUSTMENTS	.13
4	.3 FUTURE YEAR BACKGROUND VOLUMES	.13
4	.4 FINAL TRAFFIC VOLUMES FIGURE 5: YEAR 2022 AM BACKGROUND TRAFFIC VOLUMES FIGURE 6: YEAR 2022 PM BACKGROUND TRAFFIC VOLUMES FIGURE 7: YEAR 2024 AM BACKGROUND TRAFFIC VOLUMES FIGURE 8: YEAR 2024 PM BACKGROUND TRAFFIC VOLUMES WITH DEVELOPMENT FIGURE 9: YEAR 2024 PM TRAFFIC VOLUMES WITH DEVELOPMENT FIGURE 10: YEAR 2024 PM TRAFFIC VOLUMES WITH DEVELOPMENT	15 16 17 18 19
5.0	INTERSECTION ANALYSIS	.21
5	.1 PERFORMANCE MEASURES TABLE 4: HCM LEVEL OF SERVICE FOR INTERSECTIONS	
5	.2 INTERSECTION ANALYSIS RESULTS TABLE 5: INTERSECTION PERFORMANCE: WEEKDAY AM PEAK HOUR TABLE 6: INTERSECTION PERFORMANCE: WEEKDAY PM PEAK HOUR	22
5	.3 QUEUE ANALYSIS	.22

SANDOW ENGINEERING

	TABLE 7: INTERSECTION QUEUING: WEEKDAY AM PEAK HOUR TABLE 8: INTERSECTION QUEUING: WEEKDAY PM PEAK HOUR	23 23
6.0	SIGNAL WARRANT INVESTIGATION	23
7.0	SITE ACCESS EVALUATION	24
7	7.1 APPROACH SPACING STANDARDS	25
7	7.2 CHANNELIZATION STANDARDS	27
7	7.3 TURN LANE WARRANTS	27
7	7.4 SIGHT DISTANCE STANDARDS FIGURE 11- SIGHT DISTANCE AT MAIN ENTRANCE/ JIM WRIGHT WAY FIGURE 11- SIGHT DISTANCE AT RV PARK ACCESS	
7	7.5 TRUCK TURNING TEMPLATS	33
7	7.6 LEFT TURN MOVEMENTS	33
7	7.7 ADDITIONAL CONSIDERATIONS	34
7	7.8 TRAFFIC IMPACT ANALYSIS	35
8.0) CONCLUSION	36

LIST OF APPENDICES

APPENDIX A: SITE PLAN APPENDIX B: SCOPE OF WORK APPENDIX C: CRASH DATA APPENDIX D: TRAFFIC VOLUMES APPENDIX E: SYNCHRO OUTPUTS APPENDIX F: QUEUING OUTPUTS APPENDIX G: SIGNAL WARRANT APPENDIX H: TURNING TEMPLATES

Pine Springs 3

1.0 BACKGROUND

1.1 SITE INFORMATION

This report provides the Traffic Impact Analysis and findings prepared for the Pine Springs at Village Green in Cottage Grove, Oregon. The subject site is located at tax lots 3701 and 3702 of Assessor's Map 20-03-27-20.

Figure 1 contains the site location and vicinity map.

1.2 DEVELOPMENT PROPOSAL

This proposal is to replace a portion of the existing hotel with apartments and to expand the existing RV Park on site.

Access to the site is currently from an access that aligns with Jim Wright Way and an access at the south end of the site. The existing access connections will be maintained.

The development proposal is:

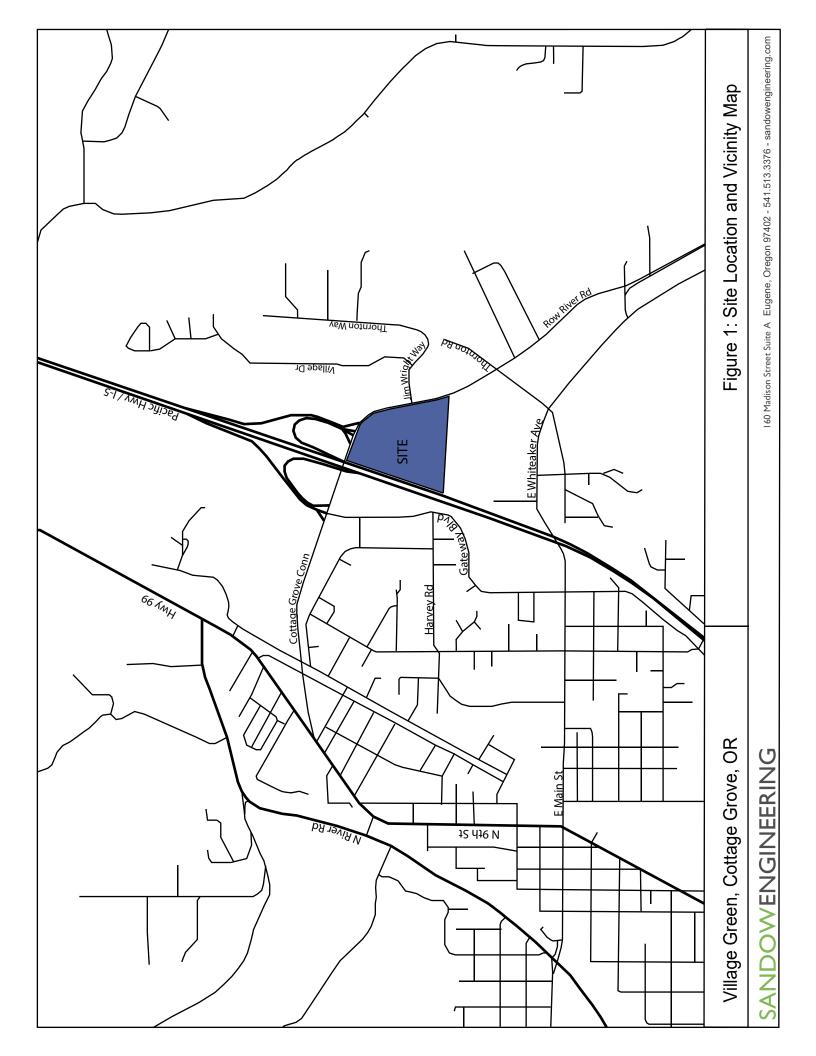
- Existing hotel- 96
- Reduce hotel rooms to 40
- Existing RV spaces- 40
- Increase RV spaces to 65
- Add 121 Residential apartments

Appendix A contains the site plan.

1.3 ANALYSIS SCOPE

A Scope of Work was coordinated with ODOT that outlines the analysis requirements and procedures. Appendix B contains the Scope of Work,

The analysis includes:


• Evaluation of site access points on Row River Road

The evaluation is prepared for the AM and Peak Period (6:30-9:30 AM) and the PM Peak Period (3:30-6:30 pm) for the following locations:

The analysis is performed for:

- Existing conditions, year 2022
- Estimated year of completion, year 2024, with and without the proposed development

The evaluation also includes an access evaluation consistent with the access permit requirements of OAR 734-051-4020(3).

2.0 EXISTING ROADWAY CONDITIONS

2.1 STREET NETWORK

Public streets included within the study area are Row River Road and Jim Wright Way. Row River Road from 1-5 interchange to Thornton Road is under the jurisdiction of ODOT. Jim Wright Way is City jurisdictions for approximately 800', then is under the jurisdiction of Lane County. The roadway characteristics within the study area are included in Table 1.

Characteristic	Row River Road	Jim Wright Way
	ODOT from	
	interchange to	City
Jurisdiction	Thornton Road	
Classification	Minor Arterial	Collector
Speed	35	25
Lanes per		
Direction	1	1
Center Left-Turn		
Lane	Yes	Yes
Restrictions in the	Ped Crossing South	None
Median	of RV Access	
Bike Lanes Present	Yes	Yes
Sidewalks Present	Yes	Yes
Transit Route	Yes	No
On-Street Parking	No	No

TABLE 1: ROADWAY CHARACTERISTICS WITHIN STUDY AREA

There is a Rectangular Rapid Flashing (RRFB) with a center median pedestrian crossing located to the south of the RV/South access.

2.2 STUDY INTERSECTIONS

The following locations are included in this study:

Two-Way Stop Controlled

- Row River Road at site access/Jim Wright Way
- Row River Road at south site access

Figure 2 illustrates the study area intersection geometry and control.

2.3 CRASH ANALYSIS

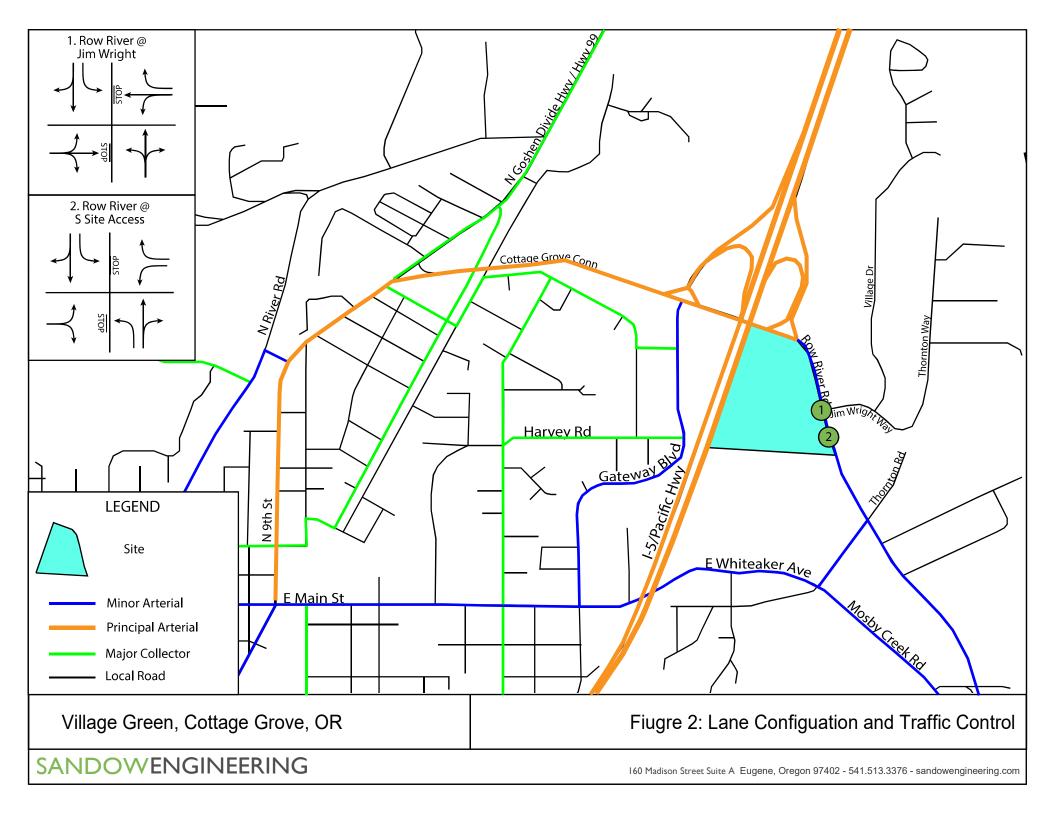

A crash evaluation was performed for the study area intersections. The analysis investigates crash data available for the most recent 5 years, 1/1/2015-12/31/2019, to determine a crash rate in crashes per million entering vehicles and the type of crashes that occurred. Year 2020 crash data has not been provided for use. The crash analysis follows the HCM Critical Crash Rate methodology. The calculated intersection crash rates are compared to the critical crash rate. If the calculated crash rate exceeds the critical crash rate, the location is considered for further mitigation measures. Crash data was provided by ODOT for the study area and is included in Appendix C. The results of the crash analysis are provided in Table 2.

TABLE 2: INTERSECTION CRASH RATES

Location	Intersection Type	Number of Crashes	ADT	MEV	Crash Rate	Critical Crash Rate	Under
Row River Rd at Jim Wright Way	Stop	4	11680	21.32	0.19	0.37	Under

*(crashes/million entering vehicles)

As illustrated within Table 2, the intersection crash rate does not exceed the critical crash rate for the intersection of Row River Road at Jim Wright Way. Therefore, mitigation for crash history is not triggered by this development.

3.0 DEVELOPMENT TRIP GENERATION AND DISTRIBUTION

3.1 DEVELOPMENT TRIP GENERATION

The trips to the site are estimated using the ITE Trip Generation Manual 11th Edition. Table 3 illustrates the PM Peak Hour and Table 4 illustrates the AM Peak Hour trip generation, and Table 5 illustrates the Daily Trips.

Land Use	Size	Rate	Trips	IN	Out
320- Motel	40	0.24(x)+11.16	21	(54%)	(46%)
	40	0.24(X) + 11.10	21	11	10
416- RV Park	60	ln(t)=0.71ln(x)-	71ln(x)-	(65%)	(35%)
	60	0.06	17	11	6
220- Multi-Family Low	121		70	(63%)	(37%)
Rise	121	0.43(x)+20.55	73	46	27
Total			111	68	42

TABLE 3: TRIP GENERATION- PM PEAK HOUR

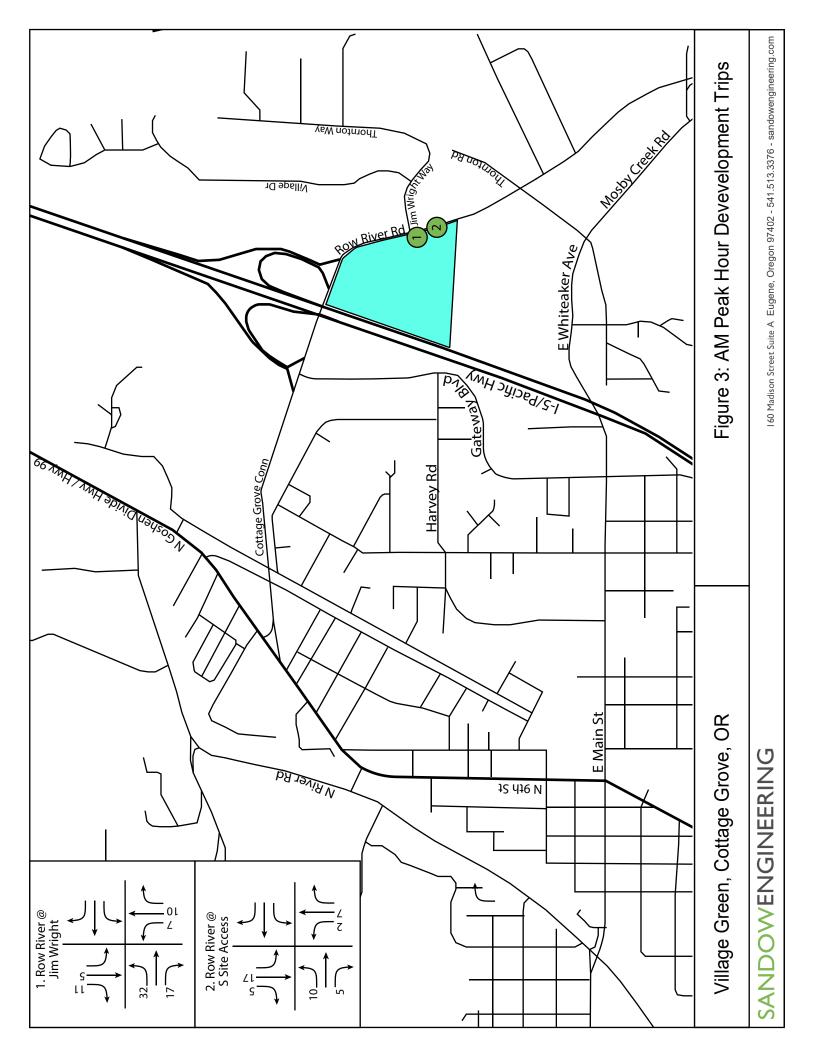
TABLE 4: TRIP GENERATION- AM PEAK HOUR

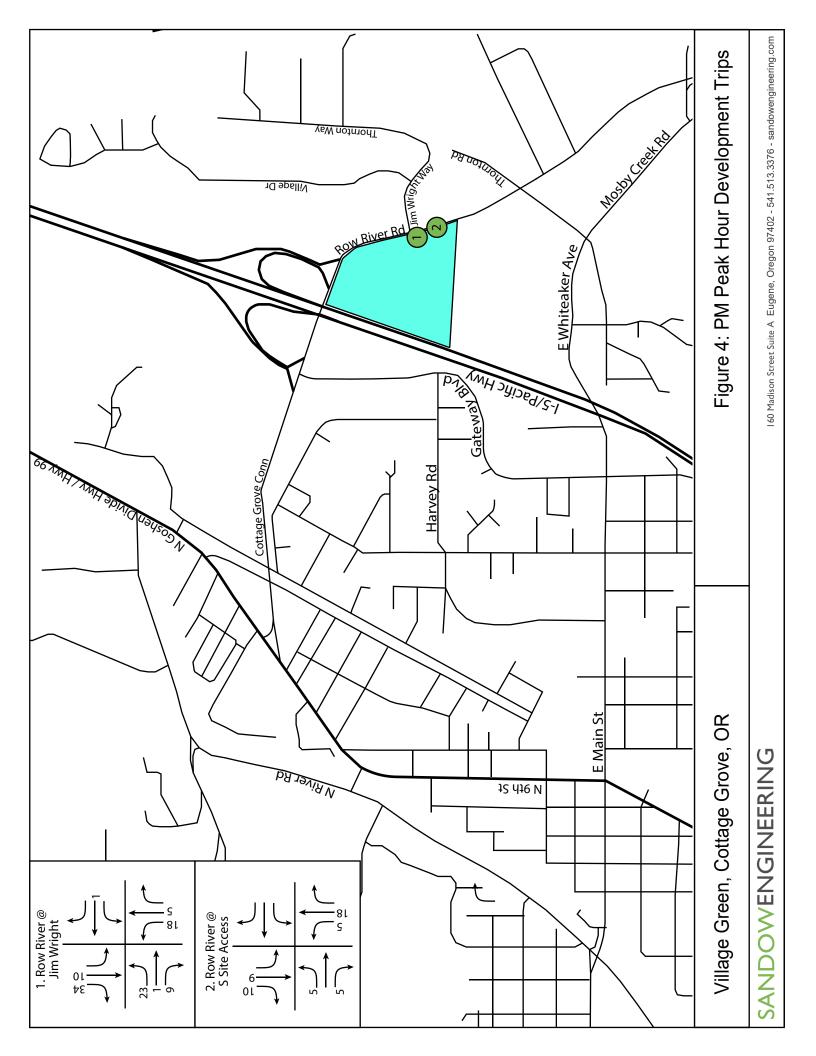
Land Use	Size	Rate	Trips	IN	Out
320- Motel	40	0.28(x)+7.85	19	(37%) 7	(63%) 12
416- RV Park	60	0.16(x)+2.93	13	(36%) 5	(64%) 8
220- Multi-Family Low Rise	121	0.31(x)+22.85	60	(24%) 14	(76%) 46
Total			92	26	66

TABLE 5: TRIP GENERATION- DAILY TRIPS

Land Use	Size	Rate	Trips	IN	Out
320- Motel	40	3.62(x)-29.43	115	(50%)	(50%)
	40	5.02(X)-29.45	115	57	58
416- RV Park	60	*	130	(50%)	(50%)
				65	65
220- Multi-Family Low	121	6.41(x)+75.31	851	(50%)	(50%)
Rise	121	0.41(x) + 75.51	001	426	425
Total			1096	548	548

* ADT rate is not provided for the land use; assume peak hour is 10% of ADT


SANDOW ENGINEERING


3.2 DEVELOPMENT TRIP DISTRIBUTION

The existing travel patterns from the traffic counts are used to estimate how the development trips will use the surrounding transportation system to access the site with modifications for reasonable origins and destinations. The trip origins/destinations are assumed at:

- North on Highway 99= 65%
- South on Highway 99= 34%
- East on Jim Wright= 1%

Figure 3 illustrates the development trip distribution for the AM Peak Hour and Figure 4 for the PM Peak Hour.

4.0 BACKGROUND TRAFFIC VOLUMES

4.1 INTERSECTION COUNTS

Sandow Engineering collected the AM and PM peak hour counts at the study are intersections. The counts were collected on August 4, 2021, February 23rd, 2022, and February 24th, 2022.

4.2 ADJUSTMENTS

Seasonal Adjustment

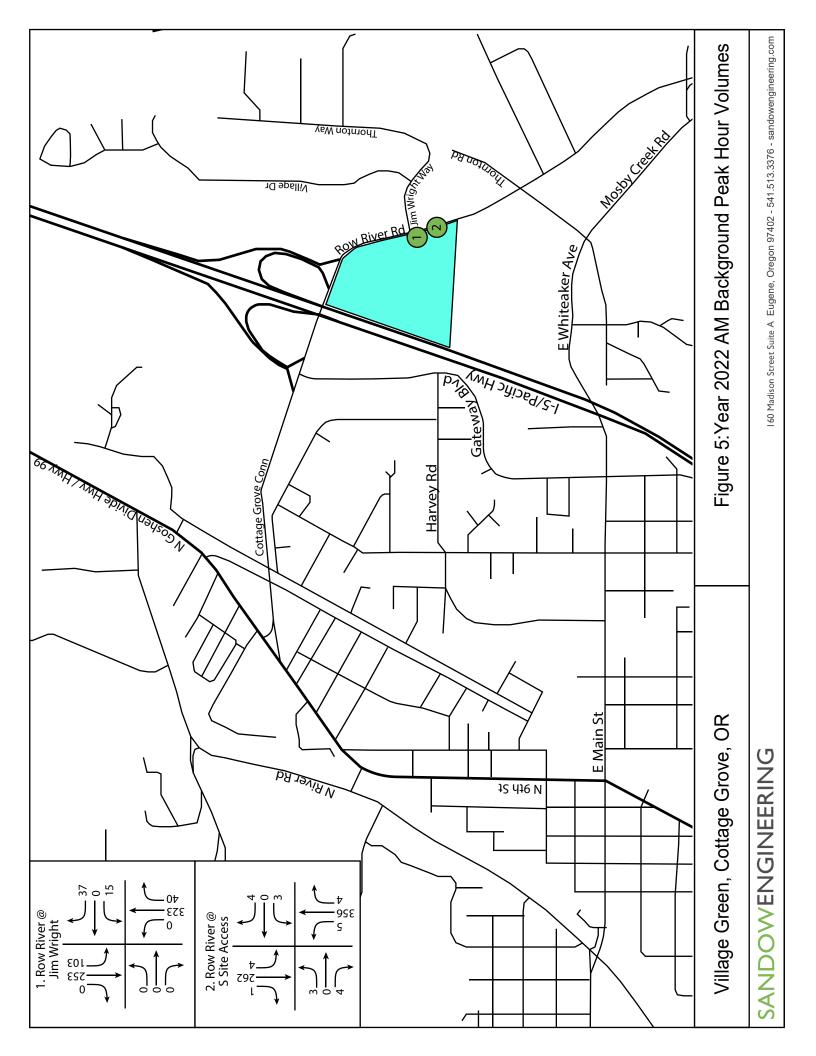
The application of seasonal adjustment factors account for the fact that volumes along State Highways and recreational routes tend to fluctuate from month to month due to changes in recreational behavior, etc. Monthly volume variations for routes with recreational traffic show much higher seasonal peaking than routes with predominantly intercity traffic.

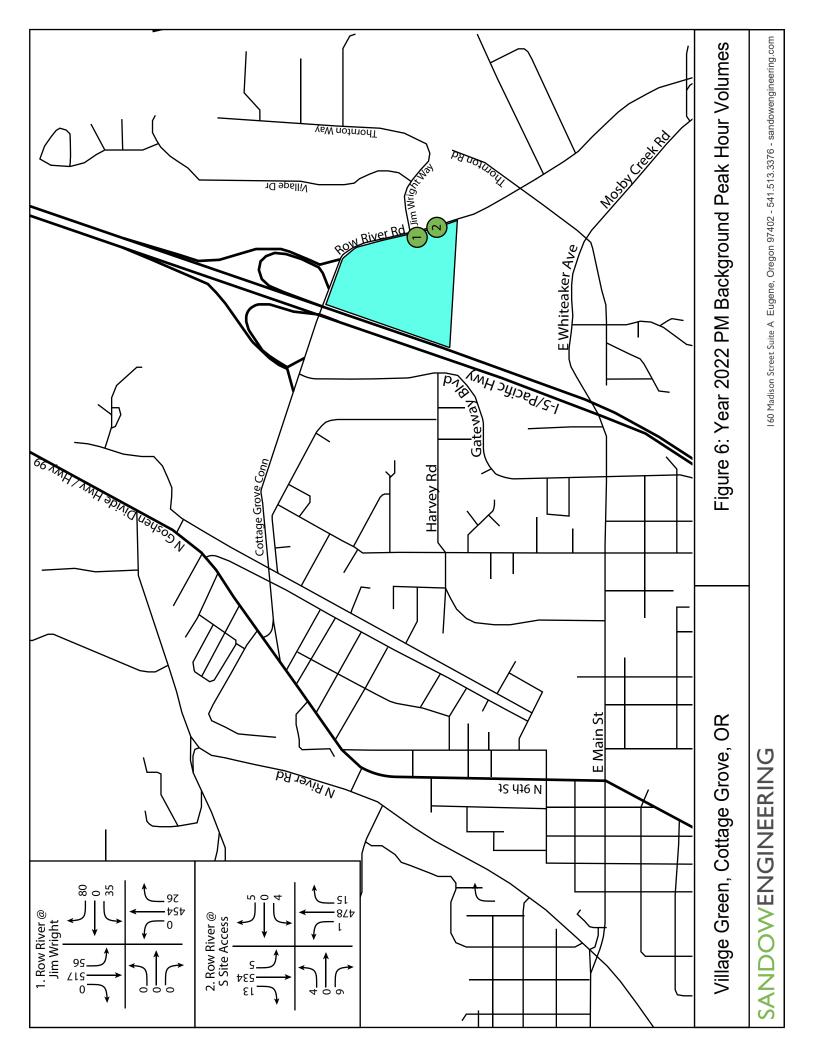
ODOT's Analysis Procedures Manual details the methodology for calculating the seasonal adjustment factor. The appropriate method is to use ODOT's Seasonal Trend Table. The peak trends for this area are Commuter and Summer Trends. The Commuter trend has a peak in June, and the Summer trend has a peak in July. The SAF for these trends are averaged, resulting in 1.011 for the August count and 1.336 for the February counts. The SAF is applied to the traffic volumes to reflect peak season conditions. The seasonal adjustment factor calculation is provided in Appendix C.

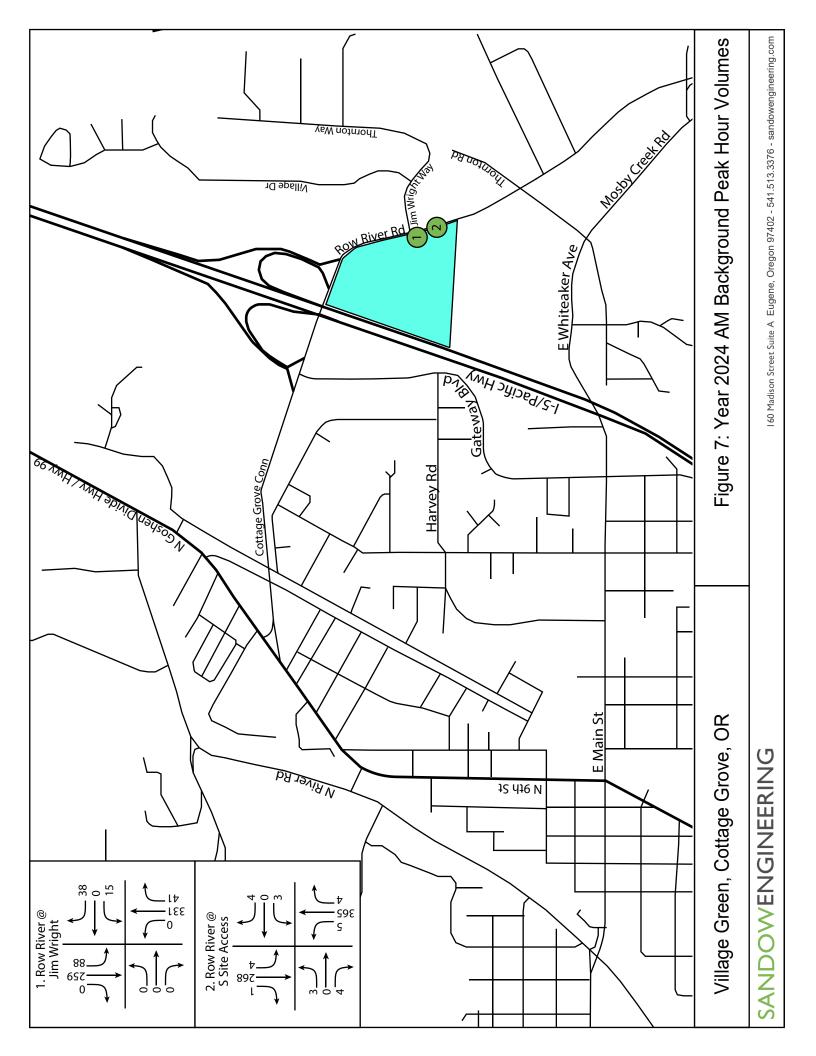
Covid Adjustments

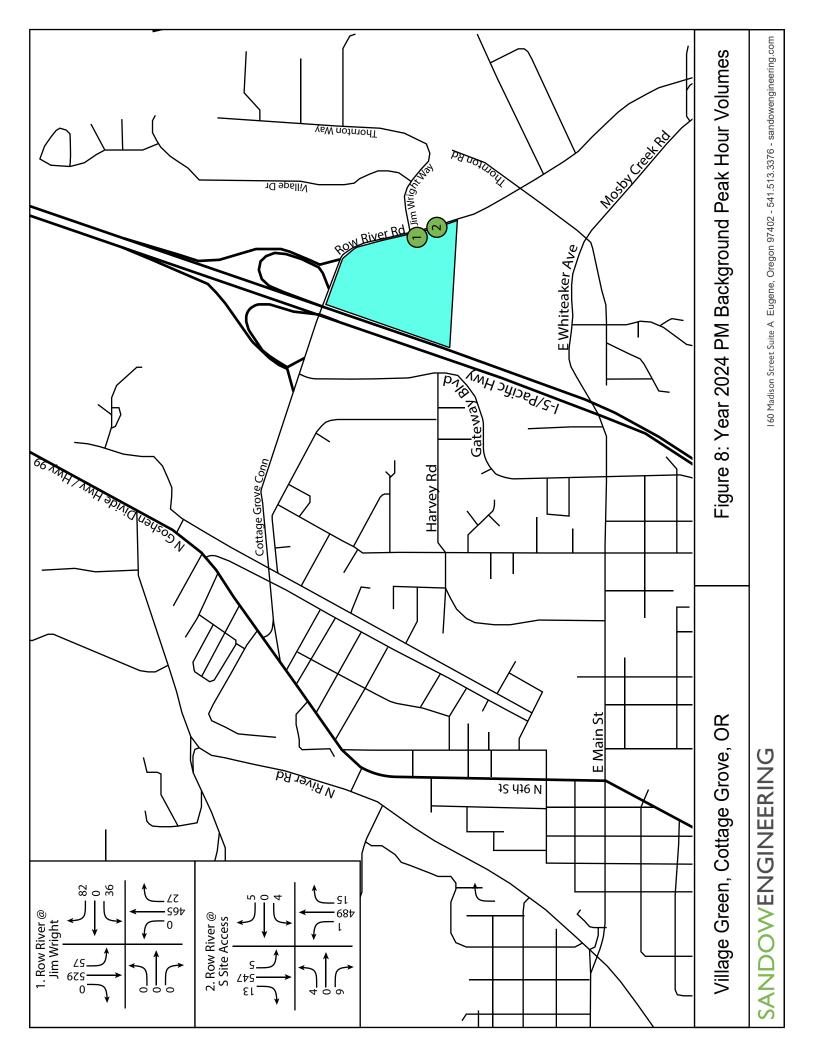
Counts collected after March 2020 were generally affected by the Covid-19 shutdowns. Therefore, counts from this time need to be adjusted to reflect conditions consistent with non-COVID-19 traffic volumes. ODOT has been monitoring the traffic volume fluctuations on state highways and comparing the current volumes to pre Covid-19 volumes. As of August 2021, all traffic volumes have returned to normal. Therefore, no adjustment is needed.

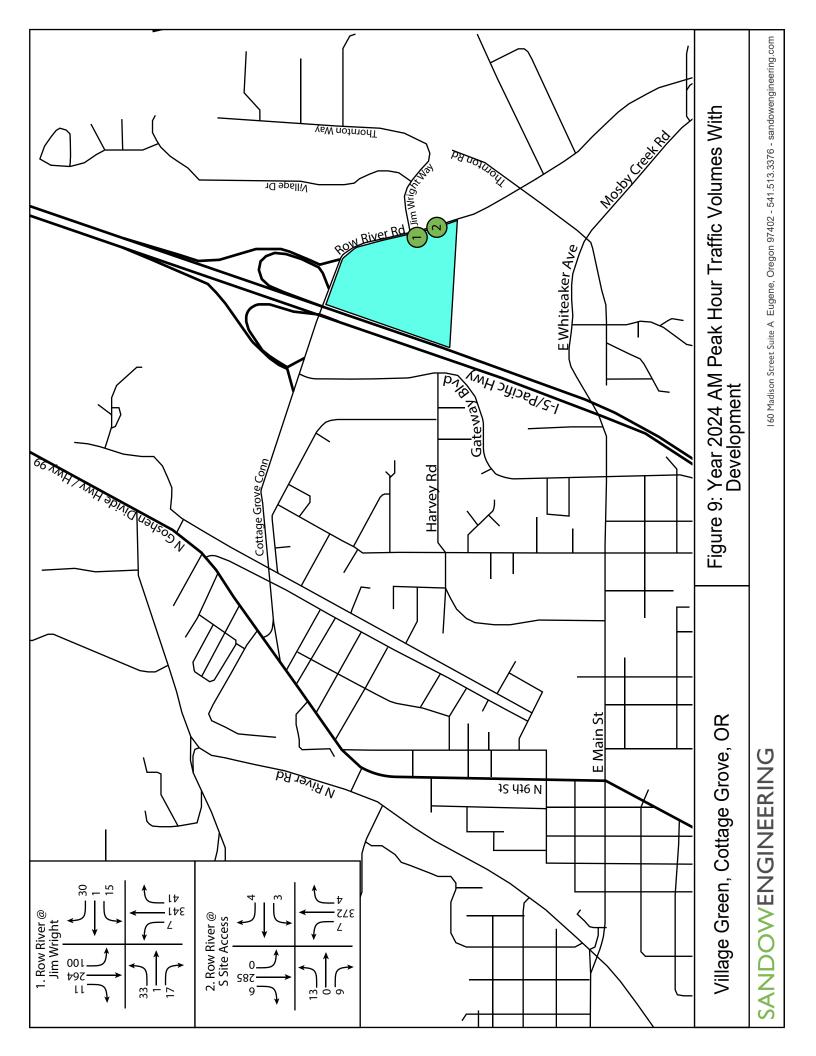
4.3 FUTURE YEAR BACKGROUND VOLUMES

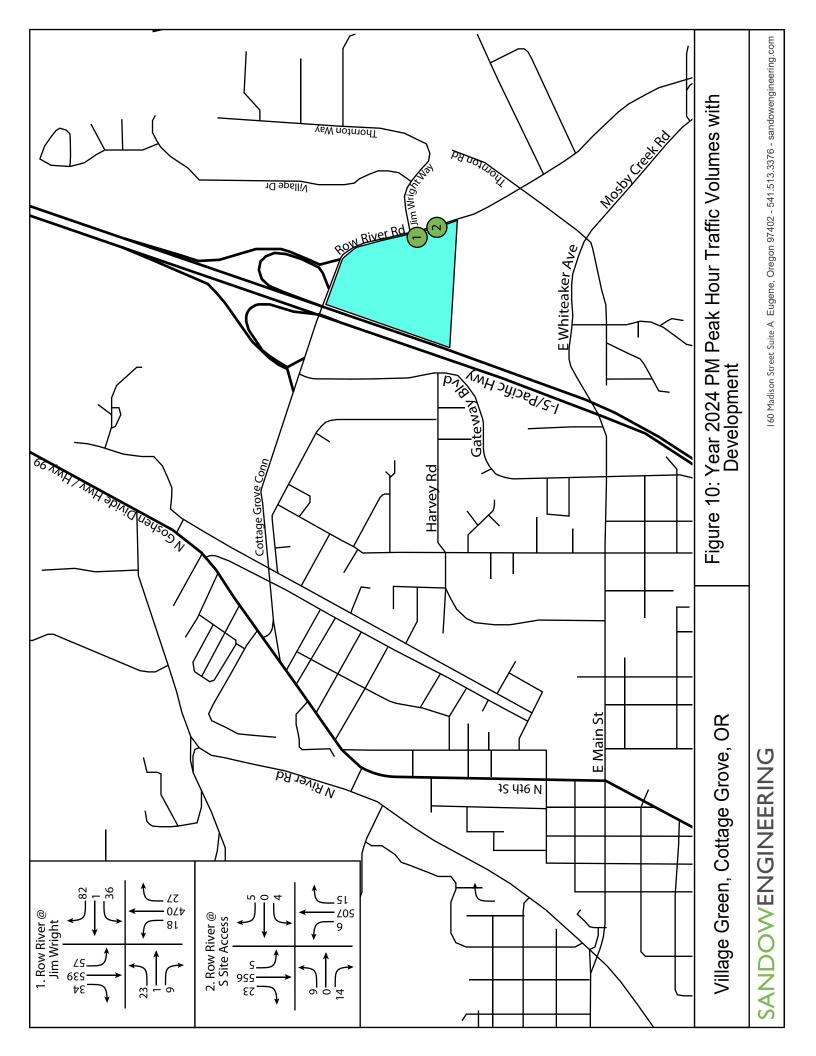

The proposed site development is projected to be completed by the year 2024. Consistent with the traffic impact analysis criteria, the intersections were evaluated for the year of completion. To account for naturally occurring traffic increases between the count year and the future analysis year, an annual growth rate is applied. The City's TSP is used for determining the growth rate. The growth rate in the study area is 1.2%.


4.4 FINAL TRAFFIC VOLUMES


The existing traffic volumes were adjusted according to the methodology described above. Appendix C provides the traffic volume calculations. The development trips are added to the background traffic volumes to represent the build conditions. The traffic volumes are illustrated in the following figures:


- Figure 5- Year 2022 AM Peak Hour Background
- Figure 6- Year 2022 PM Peak Hour Background
- Figure 7- Year 2024 AM Peak Hour Background


- Figure 8- Year 2024 PM Peak Hour Background
- Figure 9- Year 2024 AM Peak Hour with Development
- Figure 10- Year 2024 PM Peak Hour with Development



5.0 INTERSECTION ANALYSIS

5.1 PERFORMANCE MEASURES

The measure of performance for the site access and intersections is the volume-to-capacity ratio (v/c) and Level of Service (LOS).

The volume-to-capacity ratio (v/c) describes the capability of an intersection to meet volume demand based upon the maximum number of vehicles that could be served in an hour.

LOS is a measure of performance for intersections in this analysis is based on the Highway Capacity Manual (HCM). LOS is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or along a roadway segment. It was developed to quantify the quality of service of transportation facilities.

LOS is based on average delay, defined as the average total elapsed time from when a vehicle stops at the end of a queue until the vehicle departs from the stop line. The average delay is measured in seconds per vehicle per hour and then translated into a grade or "level of service" for each intersection. LOS ranges from A to F, with A indicating the most desirable condition and F indicating the most unsatisfactory condition.

The City of Cottage grove uses a LOS D standard for intersections.

The LOS criteria, as defined by the Highway Capacity Manual for signalized intersections, are provided in Table 4.

		Stopped Delay Per Vehicle (Seconds per Vehicle)				
	Unsignalized Intersections	Signalized Intersections				
Α	≤ 10.0	≤ 10				
В	$>$ 10.0 and \leq 15.0	> 10 and \leq 20				
С	$>$ 15.0 and \leq 25.0	$>$ 20 and \leq 35				
D	$>$ 25.0 and \leq 35.0	$>$ 35 and \leq 55				
E	$>$ 35.0 and \leq 50.0	> 55 and \leq 80				
F	> 50.0	> 80				

TABLE 4: HCM LEVEL OF SERVICE FOR INTERSECTIONS

ODOT uses a volume to capacity ratio (v/c) as defined by the *1999 Oregon Highway Plan*. Row Rover Road is classified as a Frontage Road. The ODOT evaluates the intersection v/c ratio for intersection using the HCM 6 Critical v/c methodology, as required by Chapter 13 of the Analysis Procedures Manual.

5.2 INTERSECTION ANALYSIS RESULTS

A performance analysis was conducted for the studied intersections for the Year 2022 and 2024 conditions during the AM and PM peak hours. The intersection evaluation was performed using Synchro 10 following HCM 6 critical movement methodology outlined in ODOT's analysis Procedures Manual. The results are shown in Table 5 for the AM peak hour and Table 6 for the PM peak hour. The SYNCHRO outputs are provided in Appendix D.

TABLE 5: INTERSECTION PERFORMANCE: WEEKDAY AM PEAK HOUR

Intersection	Mobility Standard v/c	2022	2024 Background	2024 Build
Row River at Jim Wright	0.95	0.09	0.09	0.18
Row River at south access	0.95	0.02	0.02	0.05

*Results reported for highest movement

TABLE 6: INTERSECTION PERFORMANCE: WEEKDAY PM PEAK HOUR

Intersection	Mobility Standard v/c	2022	2024 Background	2024 Build
Row River at Jim Wright	0.95	0.23	0.24	0.29
Row River at south access	0.95	0.05	0.06	0.12

*Results reported for highest movement

As illustrated in Table 5 all intersections meet the mobility standards.

5.3 QUEUE ANALYSIS

A queuing analysis was conducted for the studied intersections. The analysis was performed using SimTraffic, a microsimulation software tool that uses the HCM defined criteria to estimate the queuing of vehicles within the study area. The average and 95th percentile queuing results are illustrated in Table 7 for the AM Peak Hour and Table 8 for the AM peak hour. All results are rounded to 25 feet to represent the total number of vehicles in the queue, as one vehicle typically occupies 25 feet of space. The SimTraffic outputs are provided in Appendix F.

		Available	2022 No-Build (Feet)		2024 No-Build (Feet)		2024 Build (Feet)	
Intersection		Storage (Feet)	Average	95 th	Average	95 th	Average	95 th
	EBLTR	100	0	0	0	0	25	50
	WB L	400	25	50	25	50	25	50
Row River @ Jim Wright	WBTR	400	25	50	25	50	25	50
	NBLTR	970	25	25	25	25	25	25
	SBL	650	25	75	25	75	25	75
Row River @ South Access	EB LTR	50	25	50	25	50	25	50
	WB LTR	150	25	50	25	50	25	25
	NBL	35	25	25	25	25	25	25
	SBL	200	25	25	25	25	25	25

TABLE 7: INTERSECTION QUEUING: WEEKDAY AM PEAK HOUR

TABLE 8: INTERSECTION QUEUING: WEEKDAY PM PEAK HOUR

		Available	2022 No-Build (Feet)		2024 No-Build (Feet)		2024 Build (Feet)	
Intersection		Storage (Feet)	Average	95 th	Average	95 th	Average	95 th
Row River @ Jim	EBLTR	100	0	0	0	0	25	50
Wright	WB L	400	25	50	25	50	25	50
	WBTR	400	50	50	25	50	50	50
	NBLTR	970	0	0	0	0	25	75
	SBL	650	25	50	25	50	25	50
Row River @ South Access	EB LTR	50	25	50	25	50	25	50
	WB LTR	150	25	50	25	50	25	50
	NBL	35	0	25	0	25	25	25
	SBL	200	25	25	0	25	25	25

As demonstrated in Tables 8 and 9, the addition of development traffic does not substantially increase the queuing conditions at the studied intersections.

6.0 SIGNAL WARRANT INVESTIGATION

As requested, the intersection of Row River Road at Jim Wright Way was investigated for possible installation of a traffic signal.

ODOT requirements for a traffic signal on roadways within their jurisdiction are found within OAR 734-020-0400. For a signal to be installed, it must meet the following requirements:

(3) and Engineering Study is required to demonstrate that the installation of a traffic signal would improve the overall safety and operation of the intersection.

As demonstrated in Tables 5 and 6, the intersection meets the applicable standards for the intersection. Tables 8 and 9 illustrate that the queuing at the intersection will not cause a safety concern. Additionally, the intersection does not have a crash history (Table 2) that can be improved with the installation of a signal. The evaluation within this study does conclude that there are safety concerns that could be mitigated with the installation of a traffic signal.

(4) The Intersections Shall meet the MUTCD Traffic Signal Warrants.

(5) Warrants shall be met on the day of opening

ODOT requires the use of Manual of Uniform Traffic Control Devices (MUTCD) Signal Warrants. ODOT Transportation Planning Analysis Unit uses Signal Warrant 1, Condition A and Condition B (MUTCD), which deal primarily with high volumes on the intersecting minor street and high volumes on the major street. Meeting preliminary signal warrants does not guarantee that a signal shall be installed. Before a signal can be installed a field warrant analysis is conducted by the Region. If warrants are met, the State Traffic-Roadway Engineer will make the final decision on the installation of a signal.

ODOT provides a spreadsheet to calculate Warrant 1. The Spreadsheet is included in Appendix G. The analysis uses the year 2024 traffic volumes with the addition of development trips to the intersection.

The results of the calculation are that Warrant 1 Conditions A and B are not met for this intersection.

The traffic signal warrant is not met for the intersection of Row River Road at Jim Wright way with the development in place.

7.0 SITE ACCESS EVALUATION

Row River Road between the I-5 Interchange and Thornton Road is within the jurisdiction of ODOT. Therefore, the access connections within the section of the roadway are required to comply with ODOT standards and criteria.

As stated previously within the report, the applicant is proposing to maintain the existing access connections to Row River Road. However, the site triggers a "change of use" as defined by ODOT. A " change of use" as defined by OAR 734-051-3020 is

a) The number of peak hour trips increases by fifty (50) trips or more from that of the property's prior use and the increase represents a twenty (20) percent or greater increase in the number of peak hour trips from that of the property's prior use; or

During the project scoping process, it was determined that the site would have an increase of more than 50 trips during the PM peak hour, meeting this threshold (see Appendix B). Therefore, the site needs to demonstrate compliance with ODOT access standards found within OAR 734-051-4020.

As per OAR 734-051-4020 (2), "The standards and criteria for approval of private approaches", the regional manager shall approve an application for a state highway approach that meets the general approach criteria (a)-(c).

- (a) Approach Spacing Standards
- (b) Channelization Standards
- (c) Sight distance Standards

Additionally, ODOT has requested an evaluation of the following:

- (d) Truck Turning Templates
- (e) Overlapping Left Turn Movements/Competing use of the center turn lane.

7.1 APPROACH SPACING STANDARDS

Row River Road along the site frontage is classified as a Connector Road, has a posted speed of 35 mph along the site frontage, and has an ADT of 9,102.

As per OAR 734-051-4020 (8) Table 6, the access spacing standard for the segment of Row River Road is 350 feet. The proposed access should be 350 feet from the nearest driveway or road approach on the same side of the street (measured from centerline to centerline).

The access aligned with Jim Wright Way is located more than 350 feet from the nearest intersection or driveway to the north. There is 315 feet between the two access connections, and there 325 feet between the south access/RV Park access and the Walmart Driveway to the south. The illustration below depicts the access spacing.

The access spacing standards are not met for the southern access/RV Park Access. A deviation to the spacing standards is requested as the southern access connection cannot be moved to meet both the spacing to the north and the spacing to the south.

Access Spacing

7.2 CHANNELIZATION STANDARDS

"An application meets the channelization standards if none of the conditions in (A) through (C), below exist; ..."

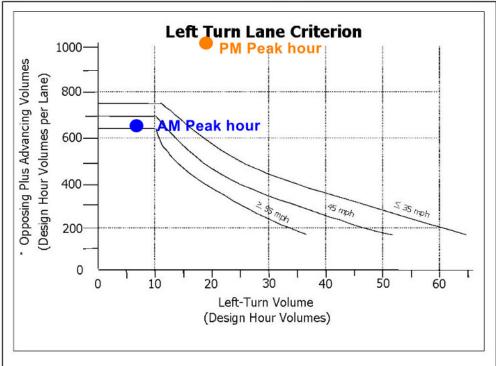
- A. Average daily trips for the proposed development exceed four hundred (400) for the approach on a 2-lane highway and with annual daily traffic of 5,000 or more
- B. Average daily trips for the proposed development exceed four hundred (400) for the approach on a 4-lane highway with annual average daily traffic of 10,000 or more.
- C. Average daily trips for the proposed development multiplied by the annual average daily traffic on the highway is equal or greater than the products listed in Table 1. (1 lane highway at 35 mph= 3.9)

The ADT of the proposed use is estimated at 1,096 vehicles. The discussion of the Trip Generation is shown in Section 3.0

Row River Road along the property frontage is a 2-lane roadway at 35 mph and has an ADT of 9,102. Item (A) above applies to this site and is not met. Item (B) does not apply. Item (C) the product is 9.97, the standard is not met.

The turn lane warrants are described in the following section.

7.3 TURN LANE WARRANTS


Right and left turn lane warrants were performed for the site access connection on Row River Road. The turn analysis follows the procedures within ODOT's Analysis Procedures Manual.

LEFT TURN LANE

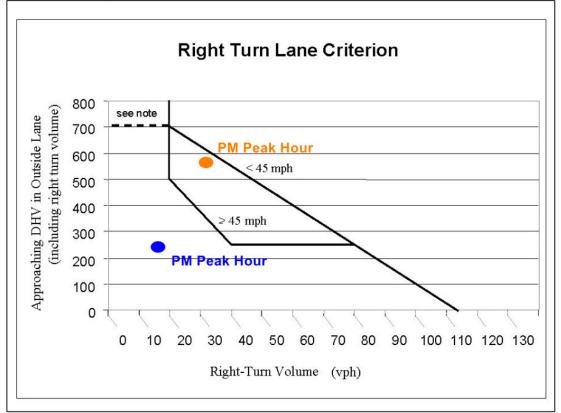
The Analysis Procedures Manual has three criteria for determining when a separate left-turn pocket should be installed. Criterion 1 is the comparison of left-turn traffic volumes to advancing and opposing traffic volumes.

There is a center two-way left-turn lane provided on Row River Road. At the main entrance/Jim Wright Way, the two-way left-turn lane is configured to not be a left turn lane for northbound left turns into the development. The turn is evaluated to determine if the twoway left-turn lane should be restriped to a left turn lane at the main entrance/ Jim Wright Way.

As per Figure 9, during the year 2024 AM peak hour, there are 7 left turns, 389 advancing volumes, 274 opposing volumes, 1 advancing, and 1 opposing travel lane, and the speed is 35 mph. As per Figure 10, during the year 2024 PM peak hour, there are 18 left turns, 515 advancing volumes, 573 opposing volumes, 1 advancing and 1 opposing travel lane, and the speed is 35 mph. The illustration below shows the left turn lane criterion.

Exhibit 12-1 Left Turn Lane Criterion (TTI)

*(Advancing Volume/Number of Advancing Through Lanes) + (Opposing Volume/Number of Opposing Through Lanes)


Opposing left turns are not counted as opposing volumes

As illustrated, the criterion for a left turn based on traffic volumes is met during the PM peak hour. Therefore, the existing center turn lane should be restriped to a northbound left-turn pocket. The year 2024 PM peak hour 95th percentile queue the movement is 75 feet. The left-turn pocket should have a minimum of 75-foot storage.

RIGHT TURN LANE

The Analysis Procedures Manual has three criteria for determining when a separate right-turn pocket should be installed. Criterion 1 is the comparison of right-turn traffic volumes to approaching traffic volumes. As per Figure 9, during the year 2024 AM peak hour, there are 11 right turns, 275 approaching volumes, and the speed 35 mph. As per Figure 10, during the year 2024 PM peak hour, there are 34 right turns, 573 approaching volumes, and the speed 35 mph. The illustration below shows the right turn lane criterion.

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed.

As shown in the illustration, a right turn lane is not warranted for the southbound right-turn movement at the main site access. As the right turn volumes are lower at the south/RV Park access, the warrants are not met for that access.

7.4 SIGHT DISTANCE STANDARDS

The requirements for sight distance follow AASHTO standards and are based upon the speed of Row River Road. The criteria established within OAR 734-15-4020 (2)(c) is based on a vehicle making a left turn exiting the sight.

Sight distances are classified by the stopping sight distance (SSD) for the major roadway and departure/intersection sight distance (ISD) for the site accesses. The stopping sight distance is the length of roadway needed for a vehicle traveling at the design speed to safely stop for a stationary object in the roadway. The required sight distance allows a driver to perceive and react to an object 2 feet high on the roadway visible from a driver's eye height of 3.5 feet above the ground. The departure sight distance (ISD) is a measure of the length of visibility of the roadway given to a stopped driver on a minor road approach. The distance provides time to perceive and react to gaps in traffic. For this calculation, it is assumed that the driver's eye is 3.5 feet above the ground and that the object to be seen is 3.5 feet above the ground of the intersecting road.

The standards for evaluating SSD and ISD follow the methodology in the AASHTO's *A Policy on Geometric Design of Highways and Streets* (2011) and OAR 734-15-4020 Table 2 . As per the AASHTO methodology, intersections and driveways should, at a minimum, meet the SSD requirements. However, it is desirable to achieve the ISD whenever possible.

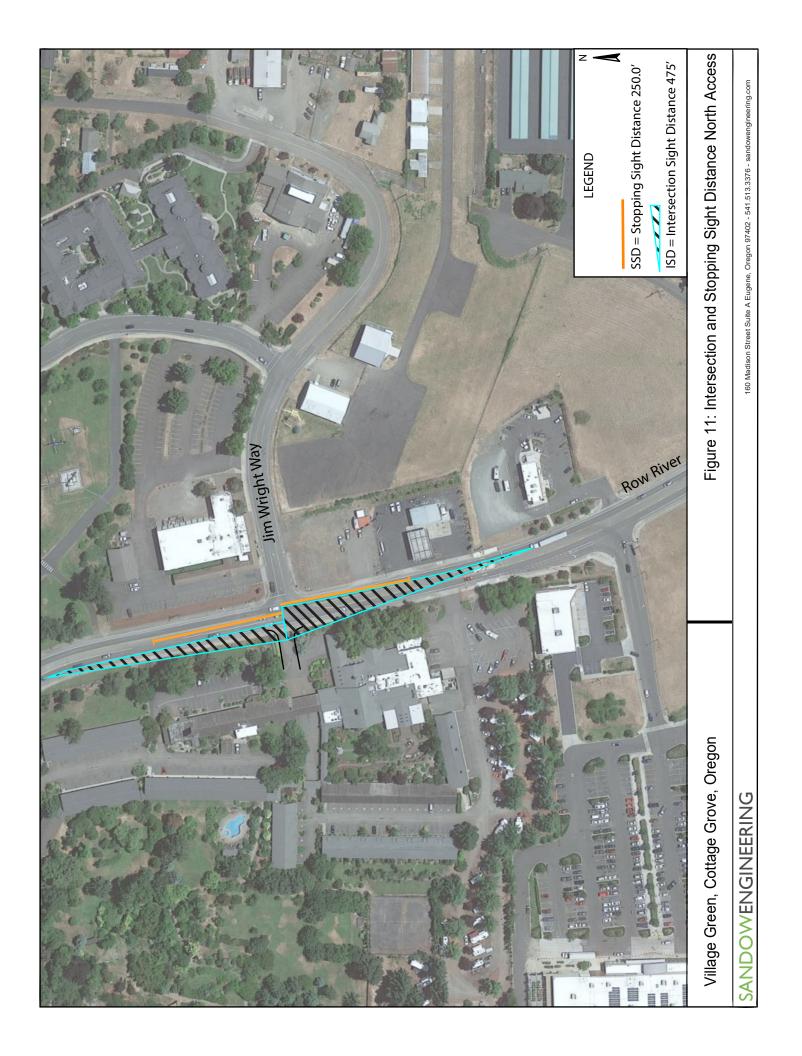
MAIN ACCESS/ JIM WRIGHT WAY

Stopping Sight Distance

Stopping sight distance is based on the speed of the major roadway. Row River Road has a posted speed of 35 mph, both north, and south of the access. As per AASHTO, the SSD is 250 feet. The available stopping sight distance exceeds this distance. See Figure 11 for an illustration of the stopping sight distance.

Intersection Sight Distance

As per OAR 734-15-4020 Table 2, The recommended intersection sight distance is calculated for the site driveway on Row River Road is 475 feet for this approach. The available ISD exceeds this distance. See Figure 11 for an illustration of the stopping sight distance.


RV PARK ACCESS

Stopping Sight Distance

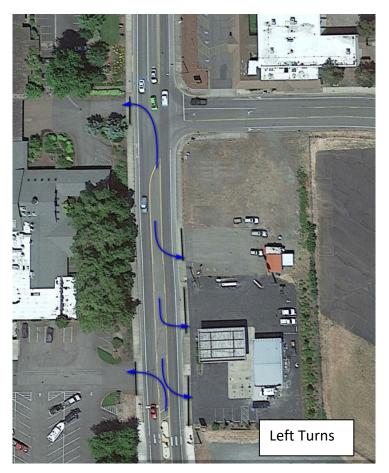
Stopping sight distance is based on the speed of the major roadway. Row River Road has a posted speed of 35 mph, both north, and south of the access. As per AASHTO, the SSD is 250 feet. The available stopping sight distance exceeds this distance. See Figure 12 for an illustration of the stopping sight distance.

Intersection Sight Distance

As per OAR 734-15-4020 Table 2, The recommended intersection sight distance is calculated for the site driveway on Row River Road is 475 feet for this approach. The available ISD exceeds this distance. See Figure 12 for an illustration of the stopping sight distance.

7.5 TRUCK TURNING TEMPLATES

The site access connections were evaluated for the turning movements for the typical truck usage. The site will have regular usage from typical single-unit trucks, SU-40, and RV usage. Therefore, the design vehicle will be SU-40 and an RV towing a boat. The SU-40 will primarily access the site via the north access, and the RV's will primarily use the south access. The turning movements were modeled using AutoCAD AutoTurns software. The turns movements are provided in Appendix H.


The site access connections can accommodate the design vehicle safely.

7.6 LEFT TURN MOVEMENTS

The site access connections were evaluated for left-turn conflicts and competing left-turn movements.

North Access: As depicted in the illustration below, there are no competing left turns for this access. There is sufficient space between access connections to make the left turns safely.

South Access: The south access and the south access to the gas station have overlapping left turns. However, the access connections are aligned minimizing conflicts. There are no safety concerns with the overlapping left turns.

7.7 ADDITIONAL CONSIDERATIONS

The following describes additional considerations for access permit review.

SAFETY AND OPERATIONS CONCERNS

As per OAR 734-051-4020 (3) ODOT "has the burden of proving safety and highway operations concerns that it relies upon in requiring mitigation or denying an application based on those concern." Those concerns are limited to:

A) Regular queuing on the highway that impedes turning movements associated with the approach.

As illustrated within this report, the anticipated queueing through the year 2024 at the entrances is not projected to cause any concerns with turning movements at the access connections.

B) Overlapping left turn movements or competing use of center left turn lane

The south access and the south access to the gas station have overlapping left turns. However, the access connection is aligned, minimizing any conflicts. There are no safety concerns with the overlapping left turns at the south access. There are no overlapping left turn conflicts at the north access

C) Location of approach on a segment that has a 20% higher crash rate than the statewide average.

As illustrated within Section 2.3, the Row River at the proposed approach location has a low crash rate.

D) Location listed within a top 5% of SPIS locations

Row River at the site frontage is not identified as a SPIS site.

E) The proposed approach is on a district or regional highway with a posted speed of 50 mph or higher and the spacing is less than the stopping sight distance.

This criterion is not applicable; Row River Road is a connector road with a posted speed of 35 mph.

F) Insufficient distance for weave movement made by vehicles exiting the proposed approach.

There is sufficient distance to vehicles to merge into traffic from the site entrances.

7.8 TRAFFIC IMPACT ANALYSIS

A Traffic Impact Analysis was prepared to support the request for a deviation for the access spacing standards. As per **ORS 374.312 Rules regarding permits for approach roads (7)** *"Applications that do not meet the spacing, channelization or sight distance standards described in ORS 374.311 may be approved with deviations from those standards as follows:"*

(a) A request for one or more deviations from the spacing, channelization or sight distance standards described in ORS 374.311 may be included in an application for one or more private approaches that do not meet the standards.

(b) Unless waived by the department, a request for a deviation must include a traffic impact analysis provided by the applicant that addresses a request for deviations from the spacing, channelization or sight distance standards described in ORS 374.311 for safety and highway operations.

(c) A request for a deviation may be approved based upon a determination by the engineer assigned by the department to analyze the request for a deviation that the approach adequately addresses the safety and highway operations concerns identified by the department as provided in subsection (10)(g) of this section.

(10) (g) The department shall have the burden of proving any safety or highway operations concerns relied upon in the department's decision to approve an application with conditions or deny an application. Safety or highway operations concerns that may be applied to the department's permit decisions on applications submitted under this section are limited to one or more of the following unique safety and highway operations concerns:

(A) Regular queuing on the highway that impedes turning movements associated with the proposed approach.

(B) Offset approaches that may create the potential for overlapping left turn movements or competing use of a center turn lane.

(C) Insufficient distance for weave movements made by vehicles exiting an approach across multiple lanes in the vicinity of signalized intersections, roads classified by the Oregon Transportation Commission as collectors or arterials and on-ramps or off-ramps.

(D) Location of the proposed approach within a highway segment with a crash rate that is 20 percent higher than the statewide average for similar highways.

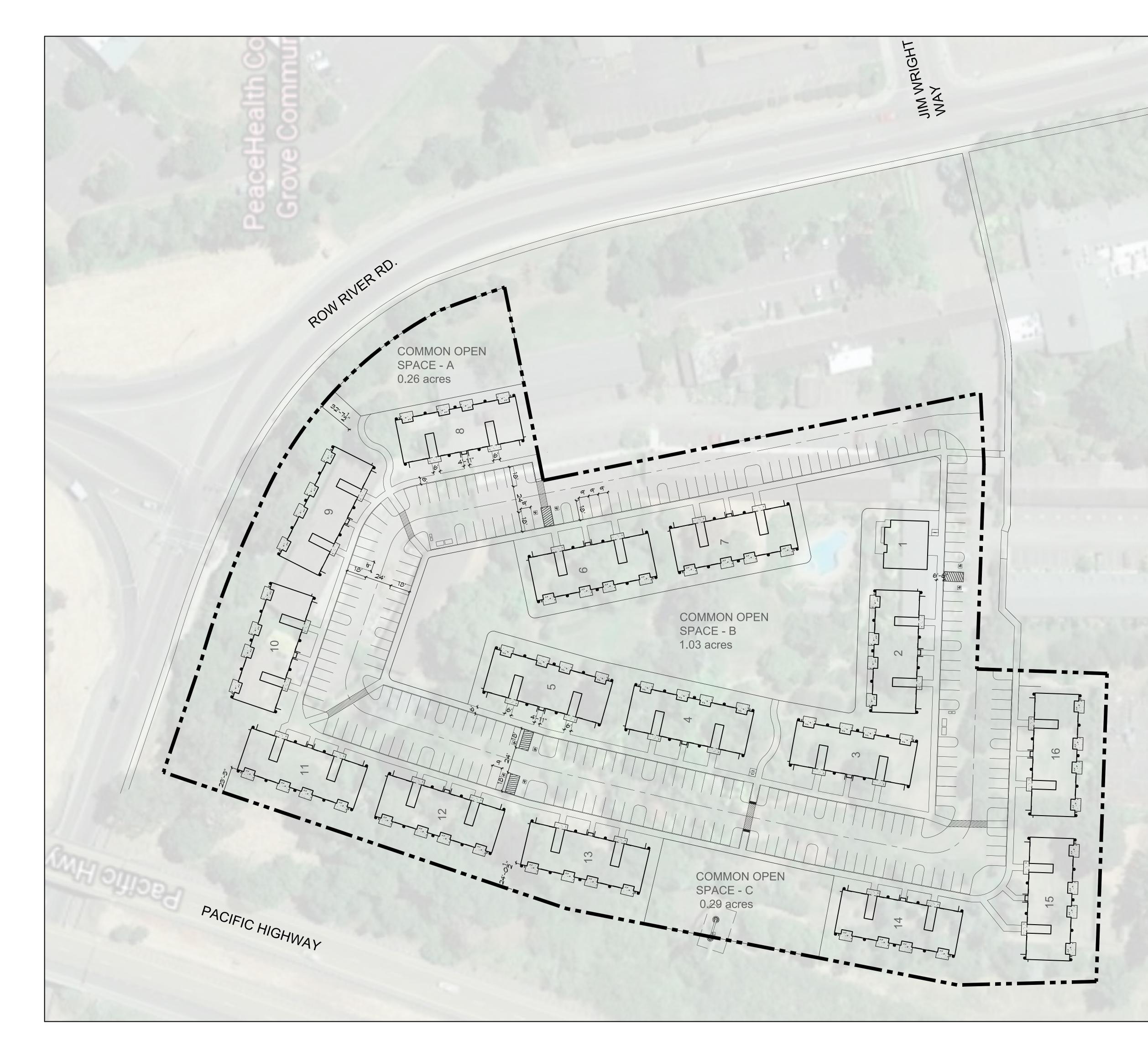
(E) Location of the proposed approach within a highway segment listed in the top five percent of locations identified by the safety priority index system developed by the department.

(F) Inadequate sight distance from an intersection to the nearest driveway on district highways and regional highways where the speed limit established in ORS 811.111, or the designated speed posted under ORS 810.180 is 50 miles per hour or higher.

A Traffic Analysis was prepared to satisfy the requirements of ORS 374.312 (7)

8.0 CONCLUSION

This report provides the Traffic Impact Analysis and findings prepared for the Pine Springs at Village Green in Cottage Grove, Oregon. The subject site is located at tax lots 3701 and 3702 of Assessor's Map 20-03-27-20.


FINDINGS

The following report recommendations are based on the information and analysis documented in this report.

- The addition of development trips does not trigger intersection mitigation.
- The addition of development trips does not increase queuing conditions at the study area intersections.
- The site accesses will operate safely and efficiently for all modes of travel.
- A separate striped northbound left turn lane is recommended at the site's north/main access.
- A traffic signal is not warranted at the intersection of Row River Road at the main site entrance/Jim Wright way

Pine Springs at Village Green

SANDOW ENGINEERING

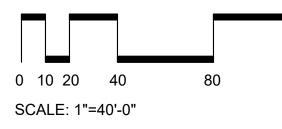
SITE DATA

ZONING: CT COMMERCIAL TOURIST

PINE SPRINGS AT VILLAGE GREEN UNITS: 121 AREA: 7.92 ACRES DENSITY: 15.3 UNITS PER ACRE VEHICLE PARKING REQUIRED: 1.5 SPACES/2-BDRM UNIT 1.5 X 121 = 181.5 PROPOSED: STANDARD: 225 SPACES ADA: 8 SPACES TOTAL: 233 = 1.9 PER UNIT

BICYCLE PARKING REQUIRED: 1 PER 4 UNITS (LONG TERM) = 30 1 PER 20 UNITS (SHORT TERM) = 6

PROPOSED: LONG TERM = 61 (GROUND FLOOR UNITS STORAGE RM) SHORT TERM = 6


COMMON OPEN SPACE REQUIRED: 15% 15% X 7.92 ACRES = 1.19 ACRES PROPOSED: 1.58 ACRES

OTHER OPEN SPACE PROPOSED:

LOT COVERAGE: IMPERVIOUS SURFACE AREA:

DUGHERTY DOUGHERTY DOUGHERTY DOUGHERTY LANDSCAPE ARCHITECTS 474 Willamette Street Suite 305 Eugene, Oregon 97401 P 541.683.5803 F 541.683.8183 WWW.DLAdesign.com
Revid & Dougherry E
PE CHECON AT ARCHIT
OOVE, OR 97424
D, COTTA
ngs Ma VER ROAI
Pine Springs Master Plan xxx row river road, cottage gr
Date: 12.28.21
Drawn By: JM Checked By: DVD Submission: Insert Text
Revisions
LA-2

|--|

 160		
	NO	RTH

DLA INC. COPYRIGHT 2021

Pine Springs at Village Green

SANDOW ENGINEERING

Department of Transportation

Region 2 Tech Center 455 Airport Road SE, Building A Salem, Oregon 97301-5397 Telephone (503) 986-2990 Fax (503) 986-2839

Date:February 7, 2022To:Douglas Baumgartner, PE
Development Review Coordinator

Subject: Pine Springs Development Outright Use Traffic Impact Analysis Scope of Work ODOT Region 2 – District 5 Pacific Highway No. 1 (River Row Road) Milepost 175.00 and 175.12 City of Cottage Grove Lane County

The purpose of this document is to define the scope of work for a Traffic Impact Analysis (TIA), to evaluate the impacts due to the Pine Springs development located within Cottage Grove. It is the Oregon Department of Transportation's (ODOT) understanding this development will replace a portion of the existing hotel (from 96 rooms to 40 rooms) with apartments (121 low-rise multifamily) and expand the existing RV spaces (from 45 spaces to 60 spaces). This TIA shall be prepared and submitted in accordance with the current version of ODOT's *Analysis Procedures Manual*¹ (*APM-V2*). The proposed development shall require the submittal of an *Application for State Highway Approach*. Any work on a new or modified approach to a state highway or any modifications to existing signalized intersections on the State Highway System (even if modification work will take place entirely within the local jurisdiction's right-of-way) will require ODOT's review, approval, and issuance of a permit to perform such work.

Scope of Work:

I. <u>GENERAL</u>

ODOT State Highway Approach Permit

An ODOT *Application for State Highway Approach*² shall be submitted for the approaches located on Pacific Highway No. 1 (River Row Road) at MP 175.00 and MP 175.12 before this traffic analysis will be

¹ http://www.oregon.gov/ODOT/TD/TP/Pages/APM.aspx

² http://www.oregon.gov/ODOT/HWY/ACCESSMGT/Pages/Application-Forms.aspx

accepted by Region 2 Traffic for review. Upon receipt of this application, a *Central Highway Approach/Maintenance Permit System* (*CHAMPS*) number will be associated with this TIA. If the applicant has any questions regarding this application, please contact Douglas Baumgartner.

Methodology and Assumptions Memorandum

Consultant shall prepare and submit a methodology and assumptions memorandum documenting methodology and assumptions to be used for existing conditions (i.e. seasonal factors), future conditions (i.e. volume development/post-processing methodology), and alternative analysis (i.e. peak hour factors, analysis parameters, calibration, etc) to Region 2 Traffic in accordance with Section 2.5.1 of the *APM-V2*. Consultant shall obtain approval of methodology from Region 2 Traffic prior to beginning analysis. By participating in this practice, consultant can proactively reduce or eliminate any need for rework. The methodology and assumptions memorandum shall include at least the following proposed analysis parameters:

- Analysis study area/intersection(s)
- Count date, type, and duration
- Seasonal adjustment
- Analysis years
- Annual growth rate
- Trip generation and distribution
- Mobility targets
- Existing and future peak hour factors (PHFs) and heavy vehicle percentages
- Unadjusted (ideal) saturation flow rate

Executive Summary

The introduction to the TIA shall provide a description of the development, site location and study area (including a site map), and briefly describe the purpose of the analysis, principal findings, recommendations, and conclusions.

Analysis Study Area

Provide a text description (including tax-lot descriptions) of the proposed development and a graphic displaying all intersections and accesses to be evaluated as part of the TIA. Maintain numbering and labeling of intersections for consistency and clarity. The following intersection(s) have been identified for analysis.

Study-Area Intersections:

- 1. Row River Road at Jim Wright Way/Site Access #1
- 2. Row River Road at Site Access #2

Note: The traffic distribution and volume determinations may expand the area of investigation or could eliminate some of the above indicated intersections.

II. TRAFFIC DATA

Traffic Counts

Traffic counts shall be collected at all identified study area intersections. At a minimum, traffic data shall be developed from *Three-Hour, Three Vehicle Classification* count (auto, bus, and truck) including turning movements, bicycles, and pedestrians, with 15-minute breakdowns during the AM (6-9 am) and PM (3-6 pm) peak periods. If a new traffic signal is anticipated, a minimum 12-hour count shall be taken, in order to develop a *Manual on Uniform Traffic Control Devices* (*MUTCD*) Traffic Signal Warrant analysis. If major modification of an existing signal is anticipated, a minimum 12-hour count shall be taken, in order to develop a complete operations analysis and design. Existing ODOT manual counts within the study area may be used for this analysis, if less than three years old. If count data older than one year is to be used, it shall be adjusted using an approved growth rate to reflect current conditions. Please consult Don Crownover to request any existing ODOT traffic data used in this analysis shall be included within the appendix.

Raw traffic data will not be accepted for use in this traffic analysis. All traffic volumes in the base year shall be seasonally adjusted to represent the 30th Highest Hour Volume (30HV) in accordance with Chapter 5 of the *APM-V2*.

Traffic volumes for future year scenarios, also known as design hour volumes (DHV), shall be developed in accordance with Chapter 6 of the *APM-V2*. Areas covered by a travel demand model shall use such model to develop future no-build and build alternative volumes. If model data will be required, the consultant shall submit a model request to ODOT's Transportation Planning Analysis Unit (TPAU) at least three weeks before the data are needed. Model information, including the model request form, is available at http://www.oregon.gov/ODOT/TD/TP/Pages/Tools.aspx. All raw model numbers shall be post-processed or used only in relative (percentage) comparisons.

Site Trip Generation, Distribution and Assignment

Site trip generation shall utilize the most recent edition of the Institute of Transportation Engineers (ITE) *Trip Generation Manual* to estimate average daily trips (ADT) and both AM and PM peak hour trip volumes, originating from, and destined for, the subject development. Trip generation shall utilize the appropriate method (*weighted average rate or fitted curve equation*) recommended per Chapter 4 of the most recent edition of the ITE *Trip Generation Handbook*. If the weekend peak trip generation of the proposed development combined with weekend background traffic volumes is greater than the weekday plus development conditions, a weekend traffic analysis shall also be included within the TIA. All assumptions, raw data, and adjustments shall be documented and discussed in the body of the TIA or in the appendix.

Approved computer models, such as *Traffix* or *Vistro*, or manual calculations may be used for determining trip assignments for site-generated traffic volumes on roadways within the study area.

Please refer to the comments regarding *Traffix* output in the below section titled **Intersection Capacity Software Analysis**.

III. ANALYSIS PROCEDURES

Capacity Analysis

Capacity analyses of signalized intersections, unsignalized intersections, roundabouts, and roadway segments shall follow the established methodologies of the current *Highway Capacity Manual* 6th *Edition* (*HCM* 6), per Chapter 2.5.1 of the *APM-V2*. Methodologies of the *Highway Capacity Manual* 2000 (*HCM2000*) will NOT be accepted. For HCM 6 signalized intersection v/c shall be computed manually unless software-calculated. For two-way stop controlled intersections, the highest movement v/c shall be reported, along with an indication of its corresponding movement. For all-way stop controlled intersections and roundabouts, the highest approach leg v/c shall be reported. Roundabout capacity analyses shall follow the procedures listed in Section 12.3.4 of the *APM-V2*.

Standard default values for use in unsignalized intersection, roundabout, and signalized intersection analyses may be found in Appendix 12/A/13A of the *APM-V2*. All intersection capacity analyses shall account for heavy vehicles by approach, as determined from manual counts. Project level mobility results (v/c) from this TIA shall be compared against ODOT's *2012 Highway Design Manual*³ (*HDM*) mobility requirements (Table 10-2). Planning level mobility results from this TIA shall be compared against Highway Mobility Standards (Policy 1F) and the Volume to Capacity Ratio Targets provided in Table 6 (revised 12/21/2011) of the *1999 Oregon Highway Plan*⁴ (*OHP*). During review of an *Application for State Highway Approach*, mobility standards do not apply to turning movements from private approaches except when the v/c ratio on the proposed approach is 1.0 or greater, per *Oregon Administrative Rule (OAR) 734-051-3040(5)(c)*.

Intersection Capacity Software Analysis

Application of computer analysis software shall follow all ODOT-approved methodologies, and all electronic analysis files shall be made available to Region 2 Traffic for review, with the submittal of this TIA. These files may be emailed if the sum-total of all digital files is less than 5 MB. However, if the sum-total of all digital files is greater than 5 MB, the consultant shall notify Region 2 staff for direction on how to best transfer files to Region staff.

Synchro 11 and *HCS7* (for isolated intersections only) are examples of approved analysis software. *Synchro/SimTraffic* is the ODOT standard software program and is the preferred format (files saved as Synchro/SimTraffic 11 compatible shall be provided for review). The only approved roundabout analysis software are *HCS*, SIDRA Intersection, and ODOT's Excel-based Single Lane Roundabout Calculator⁵. The *Traffix* analysis software package may only be used to analyze signalized intersections (as overall

³ <u>http://www.oregon.gov/ODOT/HWY/ENGSERVICES/hwy_manuals.shtml</u>

⁴http://www.oregon.gov/ODOT/TD/TP/Registry/OHP%20Policy%201F%20Mobility%20Standards%20Am endments.pdf

⁵ <u>http://www.oregon.gov/ODOT/TD/TP/Pages/Tools.aspx</u>

intersection v/c is only available via the *HCM2000* methodology, which *Traffix* uses). *Traffix* shall NOT be used to analyze unsignalized intersections. If *Traffix* is used, reports of all variable input parameters shall be submitted to Region 2 Traffic for review along with all analysis summary sheets. It is recommended consultants who prefer to utilize *Traffix* upgrade to *Vistro* as *Vistro* maintains many aspects of *Traffix*, but also utilize *HCM6* methodologies.

Queue Length Analysis

Intersection operational analyses shall include the effects of queuing and blocking. Average and 95th percentile queue lengths shall be reported for all study area intersections. The 95th percentile queuing is used for design purposes and shall be reported to the next highest 25-foot increment. For signalized intersections, *SimTraffic* is an acceptable queuing analysis software package, while *SimTraffic* or the AASHTO *2-Minute Rule* are examples of acceptable queuing analysis methodologies for unsignalized intersections. *HCM2000* or *Traffix* queuing analysis results <u>will NOT</u> be accepted. Roundabout queuing analyses shall follow the procedures listed in Section 12.3.4 of the *APM-V2*. Simulation should be used if v/c ratios exceed 0.70 and simulation shall be used if v/c ratios are equal to or exceed 0.90. Simulations shall be calibrated in accordance with Chapter 15 of the *APM-V2*.

IV. ANALYSIS REQUIREMENTS

Justification of an Access Management Deviation

Approval of the accompanying *Application for State Highway Approach* may require the approval of at least one deviation from the standards in *OAR* 734-051-1040 and *OAR* 734-051-4020. The TIA shall identify:

- Whose standards (ODOT or local jurisdiction) apply and what are those standards (spacing, channelization, sight distance) per OAR 734-051-1040 and 4020;
- Which standards are met or not met;
- Required and requested deviations (if multiple deviations are required, any dependency or relationship to one another must be identified); and
- The basis by which all requested deviations may be approved in accordance with *OAR 734-051-3050*.

ODOT's standards, if they indeed apply, are outlined in the following section. Mitigation measures may be required as a condition of approval for a deviation, to address identified safety or operational concerns, or both. For further guidance, please contact Scott Nelson, Region Access Management Engineer, at (503) 986-2882 or Brian.S.Nelson@odot.state.or.us.

ODOT's Access Management Standards

Approval of the accompanying *Application for State Highway Approach* will require compliance with the standards in *OAR 734-051-1040*. Below is information on such standards.

- Spacing Adequate spacing shall be verified for all approaches accessing the site. Approach spacing should meet the standards identified in OAR 734-051-4020(2)(a), (8), and (9) or a current access management plan/strategy adopted by ODOT. A spacing deviation may only be approved in accordance with criteria outlined in OAR 734-051-3050(5) and (6).
- Channelization Adequate channelization shall be verified for all approaches accessing the site. Highway channelization should meet the standards of *OAR* 734-051-4020(2)(b). A channelization deviation may only be approved in accordance with criteria outlined in *OAR* 734-051-3050(7).
- Sight Distance Adequate intersection sight distance shall be verified for all approaches accessing the site. Stop-controlled intersection sight distance should meet the standards of OAR 734-051-4020(2)(c). A sight distance deviation may only be approved in accordance with criteria outlined in OAR 734-051-3050(8).

Consultant shall identify if conditions exist that will not allow the Region Access Management Engineer authority to approve a deviation per *OAR 734-051-3050(9)*. If any such conditions exist, consultant should also provide information to aid the decision of the Region Manager to approve such deviations per *OAR 734-051-3050(10)*.

Safety and Operations Concerns

The development is situated in a location where the Department has determined "safety and operations concerns" exist as defined in *OAR 734-051-4020(3)*. As a result, the TIA shall address the following concern(s) and clearly demonstrate how the access can mitigate this/these concern(s) in accordance with *OAR 734-051-4020(3)*. For guidance, please consult the Region Access Management Engineer.

• Overlapping left turn movements or competing use of a center turn lane from a connection located on the opposite side of the highway.

Change of Use and Justification of Moving in the Direction of Conformity

As the proposed development will trigger "change of use of a private approach" per *OAR* 734-051-3020, the approval of the accompanying *Application for State Highway Approach* may require the application to move the approach "in the direction of conforming to the spacing, channelization or sight distance standards" per *OAR* 734-051-3020(7). For further guidance, please contact Scott Nelson, Region Access Management Engineer, at (503) 986-2882 or <u>Brian.S.Nelson@odot.state.or.us</u>.

Intersection Sight Distance

Adequate intersection sight distance shall be verified for all study intersections and highway approaches. Stop controlled intersection sight distance should meet the standards of the most recent edition of AASHTO's *A Policy in Geometric Design of Highways and Streets* and Section 3.2.4 of the *HDM*.

Turn Lane Criteria

Unsignalized study intersections and private approach roads without existing right or left turn lanes shall be analyzed to determine if they meet the criteria outlined in Section 12.2 of the *APM-V2* and locations that meet such criteria shall be noted. Installation of a turn lane may be recommended as mitigation for

development traffic impacts. However, meeting any criteria does not mean a turn lane will be approved for installation. Engineering judgment shall be used to determine if such installation would be impractical or introduce safety concerns, particularly considering bicycle and pedestrian traffic. Section 6.38 of ODOT's *Traffic Manual*⁶ should be consulted for additional guidance. Proposed turn lanes shall meet ODOT installation criteria outlined in *HDM* Sections 8.3.9 and 8.3.10 for unsignalized intersections and highway approach roads and Sections 8.4.1 and 8.4.2 for signalized intersections.

Truck Turning Templates

A truck turning analysis shall be developed for the study area intersections using an appropriate design vehicle (i.e. WB-67). This analysis shall determine if turning trucks could potentially impede opposing traffic and what mitigations may be required to prevent such a conflict. If the consultant has any questions regarding this analysis or appropriate design vehicle, Calvin Larwood should be consulted at (503) 986-2977 or Calvin.R.LARWOOD@odot.oregon.gov.

Traffic Signal Installations & Modifications

Analysis and recommendations related to new and/or modified traffic signals must follow ODOT's *Traffic Signal Policy and Guidelines*⁷ and all subsequent revisions. Any recommendations for traffic signals to be installed or modified as part of future mitigation shall be supported by a preliminary signal warrant analysis, as specified in Section 12.4.1 of the *APM-V2*. Any new traffic signal proposal for the Day of Opening shall show, but not limited to, the following:

- A clear indication for the traffic signal, only after other enhancements to nearby signals or intersections are shown to be insufficient to mitigate the new highway related impacts resulting from the proposed development;
- An assessment of the ability of the existing, planned, and proposed public roads to accommodate development traffic at another location;
- A detailed description of the proposed development's effects to the existing and proposed study area intersections; and
- Documentation of traffic volumes and signal warrant satisfaction, if a new signal is determined to be the most appropriate solution.

All proposed signals must indicate a need, as well as meet a warrant as described in OAR 734-020-0400 through 0500, Section 6.35 of the *Traffic Manual*, and the *Traffic Signal Policy and Guidelines*.

NOTE: It is the authority of the State Traffic-Roadway Engineer to approve <u>all</u> signal installations, modifications, and deviations on the State Highway System. Simply meeting a Preliminary Signal Warrant does not imply or ensure a signal will be approved by the State Traffic-Roadway Engineer. Consultant should initiate early consultation with ODOT on the analysis and conceptual layout of any proposed signals to avoid delays in the approval process.

⁶ <u>http://www.oregon.gov/ODOT/HWY/TRAFFIC-ROADWAY/pages/traffic_manual.aspx</u>

⁷ http://www.oregon.gov/ODOT/HWY/TS/Pages/publications.aspx

Traffic Signal Progression Analysis

If a new traffic signal is proposed, or an existing signal modified, as part of this development, a Traffic Signal Progression Analysis may be necessary. If the new or modified traffic signal meets the requirements of *OAR 734-020-0480* and Section 13.4.6 of the *APM-V2*, then a progression study shall be developed in accordance with procedures outlined within that same section of the *APM-V2*.

Safety Analysis

Traffic safety shall be taken into consideration for development impacts. The consultant shall obtain the most recent five years of crash data for both state and non-state roadways within the study area, including Safety Priority Index System (SPIS) sites, and conduct a crash analysis. Crash data may be requested from Sylvia Vogel with ODOT's Crash Data & Reporting Unit at (503) 986-4240 or <u>Sylvia.M.Vogel@odot.state.or.us</u>.

The standards for safety analyses are covered in Chapter 4 of the *APM-V2* and Exhibit 4-2 recommends AASHTO's *Highway Safety Manual (HSM)⁸* predictive methods as "best practice" methods for development review safety analyses. As such, the safety analysis shall include analysis of the *HSM* predictive methods (net change in predicted crash frequency or predicted crashes, excess expected crash frequency) per Section 4.4.

Intersection crash rates shall be compared to the published 90th percentile intersection crash rate in *APM-V2* Exhibit 4-1. If any rate is close to or exceeds the 90th percentile rate, consultant shall provide analysis of crash patterns and identification of contributing factors and potential countermeasures. Segment crash rates (ODOT State Highway Crash Rate Tables – Part II⁹) must be compared with the current published statewide crash rates for similar facilities (ODOT State Highway Crash Rate Tables - Table II). For segments that are close to or exceed the published statewide crash rate for similar facilities, consultant shall provide analysis of crash patterns and identification of contributing factors and potential countermeasures. Consultant shall map locations of all safety issues along with any SPIS sites. Technical guidance on safety analyses of crash rates¹⁰ and SPIS¹¹ is available.

V. POTENTIAL MITIGATIONS

This traffic study should present several potential mitigation alternatives and the engineering justification for each. When developing mitigation alternatives for a proposed intersection, or an existing stop-controlled intersection, please consider the following hierarchy for traffic control alternatives:

- 1. Two-way stop-controlled intersection
- 2. Four-way stop-controlled intersection

⁸ <u>http://www.highwaysafetymanual.org/</u>

⁹ http://www.oregon.gov/ODOT/TD/TDATA/pages/car/car_publications.aspx

¹⁰ http://www.oregon.gov/ODOT/HWY/TECHSERV/docs/tech_bulletins/AM13-10b.pdf

¹¹ http://www.oregon.gov/ODOT/HWY/TECHSERV/docs/tech_bulletins/AM13-03b.pdf

- 3. Turn-movement restrictions
- 4. Modern roundabout
- 5. Grade separation with stop-controlled connections
- 6. Grade separation with free-flow connections
- 7. Signalized intersection

A traffic signal should be the last alternative considered due to the potential for increases in congestion, crashes and pollution and the associated life-cycle costs of the traffic control device. A traffic signal proposed to only serve a single development, and not provide connectivity to other public streets or highways, is unlikely to be approved. Signal timing adjustments <u>will NOT</u> be considered as mitigation. An analysis shall be developed for intersections, where a traffic signal may be proposed as mitigation, to determine if a modern roundabout would be an appropriate traffic control device. If a roundabout on a state highway is to be considered, it should be proposed early in the development review process. ODOT Motor Carrier shall be consulted to ensure any roundabout will meet highway freight and mobility standards. If a studied facility is a formally recognized freight route, compliance with *Oregon Revised Statutes (ORS) 366-215* "Reduction in Capacity" may be necessary if alternative concepts could potentially restrict the roadway width (i.e. curb extensions, medians, etc.). In situations where proposed mitigation is located on a state highway routed over city right-of-way, coordination with the local jurisdiction will be required.

VI. ANALYSIS SCENARIOS

A complete TIA will include analysis of at least the following scenarios.

Traffic Volumes & Operations – Existing Conditions (2022)

Identify current year site conditions at the proposed development location. This includes, but is not limited to, the following:

- A description of the site location, zoning, existing use(s), and proposed use(s) of subject property.
- A description of surrounding vacant or re-developable properties, with anticipated land uses.
- A graphic identifying existing lane configurations and traffic control devices at all study area intersections.
- A graphic showing existing 30HV traffic, reported as average daily traffic (ADT), as well as AM and PM Peak Hour Volumes (PHV). Also include in this graphic, a list of heavy vehicle percentages by approach, seasonal adjustment factors (if any), and all growth rates used to determine future volumes.
- Identify all road segments, public intersections, public or private approaches where the proposed project can be expected to increase traffic volumes by at least 10 percent of the current traffic or generate an additional 300 ADT or 50 peak hour trips. Please refer to Table

3.3.1 in ODOT's *Development Review Guidelines*¹² (*DRG*) for more information. If the local jurisdiction has more conservative thresholds, those thresholds apply.

- An analysis of existing intersection operations, reported in terms of both Volume to Capacity (v/c) and Level of Service (LOS).
- A comparison of ODOT crash rates against the most recent five years' worth of crash data, over at least a one-mile segment. This analysis shall include information on any SPIS sites adjacent to or within the study area.

Traffic Volumes & Operations – Year of Opening (20##)

An analysis shall be made of the study area intersections, for an assumed *Year of Opening*, under both *"background traffic"* and *"total traffic"* scenarios. The *"background traffic"* scenario shall include all inprocess traffic (traffic generated by approved and pending development), if any such exist. If none exist, include a statement verifying all jurisdictions were contacted for information on in-process development traffic and that none existed. The *"total traffic"* scenario is considered *"background traffic"* volumes plus trips generated by the proposed development. If this proposal is to be developed in multiple phases, then a *Year of Opening* analysis shall be developed for each phase of the proposal. For each *Year of Opening* analysis scenario, the TIA shall provide at least the following data:

- A graphic showing *Year of Opening* traffic volume, for both "background traffic" and "total traffic" scenarios;
- A graphic or table showing v/c and LOS analysis results for both "background traffic" and "total traffic" scenarios;
- A graphic or table itemizing 95th percentile storage length requirements for all approaches, rounded to the next highest 25-foot increment; and
- A graphic showing the existing turn lanes and storage length dimensions.

Traffic Volumes & Operations – Future Year (20##)

A *Future Year* analysis shall be required if either the development's daily trip (ADT) generation meets identified thresholds or if the development includes a plan amendment or zone change. Please refer to Table 3.3.2 of the *DRG* to determine what *Future Year* scenario may be required. If required, analyses shall be made for all study area intersections, under both *Future Year "background traffic"* and *"total traffic"* scenarios. The *Future Year "background traffic"* scenario shall include all in-process traffic (traffic generated by approved and pending development), if any such exist. If none exist, include a statement verifying all jurisdictions were contacted for information on in-process development traffic" volumes plus the peak hour trips generated by the proposed development. For each potential *Future Year* analysis scenario, the TIA shall provide at least the following:

• A graphic showing *Future Year* traffic volumes for both "*background traffic*" and "*total traffic*" scenarios;

¹² <u>http://www.oregon.gov/ODOT/TD/TP/Pages/Plans.aspx</u>

- A graphic or table showing v/c and LOS analysis results for both "background traffic" and "total traffic" scenarios;
- A graphic or table itemizing 95th percentile storage length requirements for all approaches, rounded to the next highest 25-foot increment; and
- A graphic showing the existing turn lanes and storage length dimensions.

Conclusions and Recommendations

This study shall summarize existing and future conditions and discuss the impacts of the proposed development. Identify any operational or safety deficiencies and recommend mitigation, along with a conclusion on the effectiveness of the proposed mitigation. Summarize how the proposed development will comply with all operational and safety standards.

Appendix Items

The appendix is a necessary component of a complete TIA. This TIA shall include an appendix with at least the following information:

- this scope of work letter
- traffic count data sheets
- crash and safety data
- trip generation and volume development calculations
- software input sheets (for verification of default and input parameters)
- software analysis output sheets
- queuing analysis worksheets
- truck turning template
- turn lane criteria worksheets (if applicable)
- traffic signal warrant worksheets (if applicable)

VII. SUBMITTIAL CRITERIA

Digital versions of the submitted TIA and all supporting analysis work are preferred. These files may be emailed if the sum-total of all digital files is less than 5 MB. If the sum-total of all digital files is greater than 5 MB, we request Region 2 staff be notified for direction on how to best transfer files to Region staff. The final version of the TIA will not be accepted until it has been stamped by an Oregon-registered Professional Engineer with license being current and in good standing, with expertise in civil or traffic engineering. Region 2 Traffic staff <u>should</u> require no more than 30 days to review and comment on the draft TIA. *Note: This timeframe may be adjusted, based on staffing and existing workloads*.

We trust this scope will provide enough information to conduct the analysis. However, the Department is prepared to work with the consultant, as necessary, to answer any additional questions that may arise during the course of its work. Additional coordination of traffic analysis data may be required during the TIA review process.

If there are any questions or comments regarding this scope of work, please contact me directly at (503) 986-2857 or <u>Arielle.Ferber@odot.state.or.us</u>. April Jones is the ODOT District 5 Senior Permits Specialist; she may be reached at (541) 726-2577 or <u>April.C.JONES@odot.oregon.gov</u>. Douglas Baumgartner is the ODOT Development Review Coordinator for this project; he may be reached at (503) 798-5793 or <u>Douglas.G.BAUMGARTNER@odot.oregon.gov</u>. If there are any questions or requests for additional information regarding land use issues, please contact Bill Johnston, the ODOT Senior Transportation Planner for Area 5, at (541) 747-1354 or <u>bill.w.johnston@odot.oregon.gov</u>.

Sincerely,

Arielle Ferber, P.E. Traffic Analysis Engineer ODOT Region 2 Tech Center 455 Airport Road SE, Building A Salem, Oregon 97301-5397

SANDOWENGINEERING 160 MADISON STREET, SUITE A • EUGENE, OREGON 97402 • 541.513.3376

TECH MEMO

DATE: January 24, 2022

- TO: Doug Baumgartner ODOT Region 2 Development Review Coordinator
- FROM: Kelly Sandow P.E. Sandow Engineering

RE: Pine Springs at Village Green Development- TIA Scoping Request

Sandow Engineering would like to request a Scope of Work for the following development project in Cottage Grove.

SITE INFORMATION

The site is located at tax lots 3701 and 3702 of Maps 20-03-27-20. The site is located on Row River Road just south of the interchange. Access to the site is currently from an access that aligns with Jim Wright Way and an access at the south end of the site.

The site is currently occupied by the Village Green Hotel and RV Park.

DEVELOPMENT PROPOSAL

The applicant is proposing to replace a portion of the hotel with apartments and to expand the RV spaces. The total development on site will be:

- Existing hotel rooms- 96
- Reduce hotel rooms to 40
- Existing RV spaces- 45
- Add 15 RV spaces
- Add 121 residential apartment units

TRIP GENERATION AND DISTRIBUTION

The trips to the site are estimated using the ITE Trip Generation Manual 11th Edition. Table 1 illustrates the PM Peak Hour and Table 2 illustrates the AM Peak Hour trip generation.

TABLE 1: TRIP GENERATION- PM

Land Use	Size	Rate	Trips
Existing			
320- Motel	96	0.24(x)+11.16	34
416- RV Park	46	Ln(t)=0.71ln(x)-0.06	14
Total Existing			48
Proposed			
320- Motel	40	0.24(x)+11.16	21
416- RV Park	60	ln(t)=0.71ln(x)-0.06	17
220- Multi-Family Low Rise	121	0.43(x)+20.55	73
Total Proposed			111
Total New			63

TABLE 2: TRIP GENERATION- AM

Land Use	Size	Rate	Trips
Existing			
320- Motel	96	0.28(x)+7.85	35
416- RV Park	46	0.16(x)+2.93	10
Total Existing			45
Proposed			
320- Motel	40	0.28(x)+7.85	19
416- RV Park	60	0.16(x)+2.93	13
220- Multi-Family Low Rise	121	0.31(x)+22.85	60
Total Proposed			92
Total New			47

The proposed site redevelopment is anticipated to generate 63 additional PM Peak Hour trips, and 47 additional PM Peak Hour trips.

The trips are distributed on the street network based on the existing travel patterns with modifications for reasonable origins/destinations. The distribution is estimated as:

- To/from north- 65%
- To/from south- 34%
- To/from east- 1%

The trip distribution is shown in Figure 1 for the AM and Figure 2 for the PM.

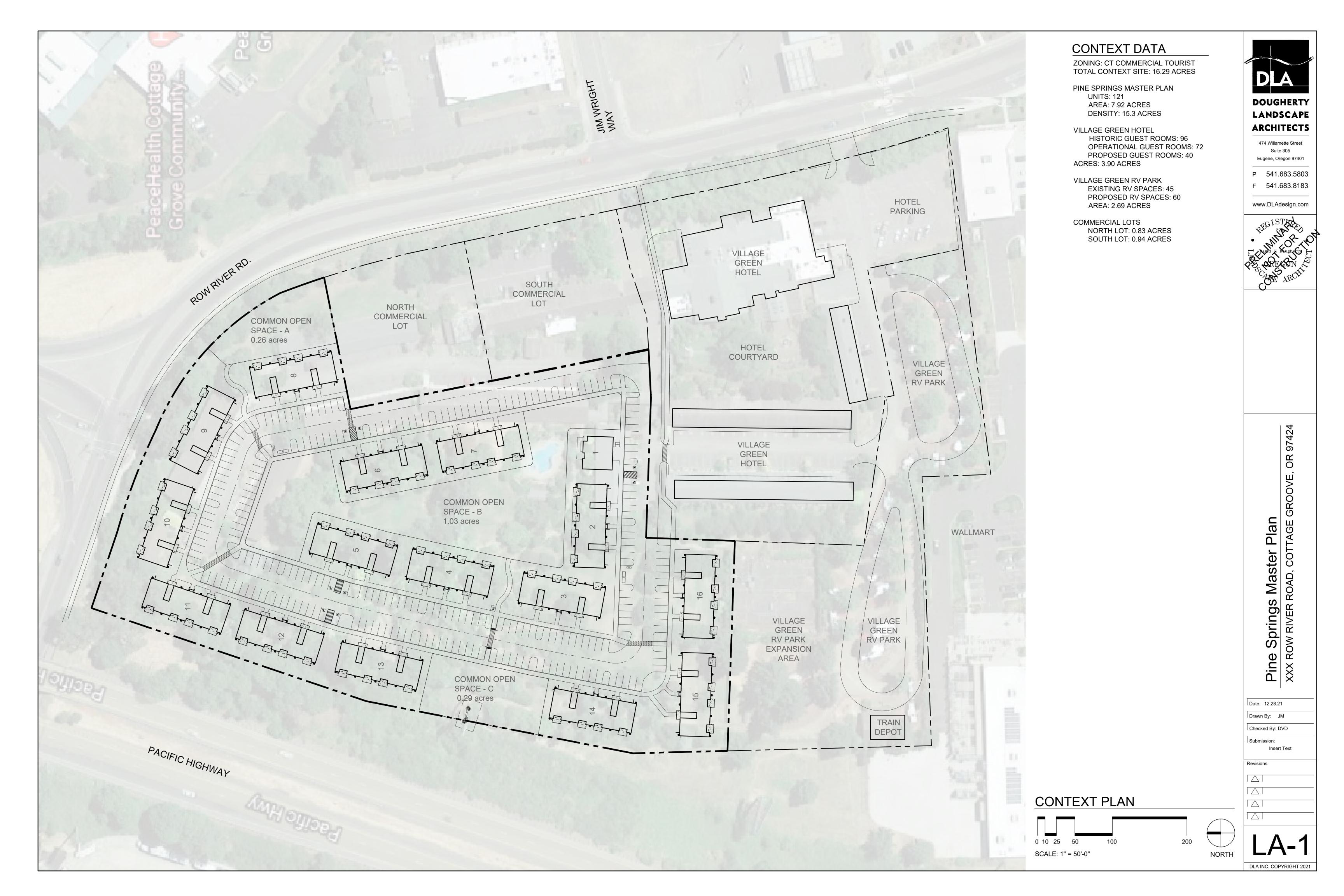



Figure 1: AM Peak Hour Development Trip Distribution

Pine Springs at Village Green

SANDOW ENGINEERING

CRASH DATA SUMMARY

			Jir	m Wright V	Way @ Ro	ow River I	Rd									
YEAR	PDO	INJURY	FATAL	HEAD	REAR	SIDE	TURN	OTHER	PED	BIKE	TOTAL					
2015		PDO INJURY FATAL HEAD REAR SIDE TURN OTHER PED BIKE TOTAL 1 1 1 1 1 1 1 1														
2016																
2017	1	1			1			1			2					
2018											0					
2019	1						1				1					
TOTALS:	2	2	0	0	1	0	2	1	0	0	4					

Crashes ADT Crash Rate Critical Crash Rate MEV Stop 1 Jim Wright Way @ Row River Rd 4 11680 21.32 0.19 0.37 under 2 3 4 Weighted Average Stop 4 21.32 0.187652468

CDS380				(TRANSPORTATION							
05/28/2021					TRANSPOF	RTATION			SH ANAYLYSIS AND	REPORTING U	UNIT					
									CRASH LISTING							
CITY OF COTTAG	E GROVE, LANE COUNTY			JIM WRIGHT V	WY at COTTAGE			-	ge Grove, Lane Co)1/2015 to 12,	/31/201	9			
						1 -	4	of 4 Cras	sh records shown.							
S D	М															
SER# P R	J S W DATE CLASS	CITY STREET		INT-TYPE	C				SPCL USE							
INVEST E A U	I C O DAY DIST	FIRST STREET	RD CHAR		INT-REL	OFFRI		CRASH	TRLR QTY	MOVE			A S			
RD DPT E L G		SECOND STREET	DIRECT	LEGS	TRAF-	RNDBI		COLL	OWNER	FROM	PRTC	INJ	G E LICNS PED			
UNLOC? DCS		LRS	LOCTN	(#LANES)		DRVWY		1	V# TYPE	TO	P# TYPE	SVRTY	E X RES LOC	ERROR	ACT EVENT	CAUSE
03695 NNN	N N 10/13/2017 1	6 JIM WRIGHT WY	INTER	3-leg	Ν	Y	RAIN	FIX OBJ	01 NONE 0	TURN-R					040,058	17
CITY	FR	COTTAGE GROVE CONN	Ν		STOP SIGN	Ν	WET	FIX	PRVTE	E –N					000 040,058	00
N	5P		05	0		N	DAY	INJ	PSNGR CAR		01 DRVR	INJC	67 F OTH-Y	081	028	17
Ν	43 48 7.5 -123 25.01	2 0001KC100S00											N-RES			
04838 N N N		6 JIM WRIGHT WY	INTER	3-leg	N	N	CLD	0-1 L-TU	RN 01 NONE 0	STRGHT						02
CITY	SA	COTTAGE GROVE CONN	CN		STOP SIGN	N	DRY	TURN	PRVTE	S-N					000	00
													40			
N N	3P 43 48 7.5 -123	2 0001KC100S00	04	0		Ν	DAY	INJ	PSNGR CAR		01 DRVR	NONE	42 M OR-Y OR<25	000	000	00
IN	25.01	2 0001RC100500											01(~25			
									01 NONE 0	STRGHT						
									PRVTE PSNGR CAR	S -N	02 PSNG	INJC	38 F	000	000 000	00 00
											02 1000	1110 0	50 1	000	000	00
									01 NONE 0	STRGHT						
									PRVTE	S -N					000	00
									PSNGR CAR		03 PSNG	INJB	00 M	000	000	00
									02 NONE 0	TURN-L						
									PRVTE	N -E					000	00
									MOTRHOME		01 DRVR	NONE	71 M OTH-Y	028,004	000	02
													N-RES			
01352 N N N	04/21/2017 1	6 JIM WRIGHT WY	INTER	3-LEG	Ν	Ν	CLR	S-1TURN	01 NONE 9	STRGHT						29
NO RPT	FR	COTTAGE GROVE CONN	CN		STOP SIGN	Ν	DRY	REAR	N/A	N -S					000	00
Ν	5P		01	0		Y	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 Unk UNK	000	000	00
Ν	43 48 7.5 -123												UNK			
	25.01								02 NONE 9	TURN-R						
									N/A	N -W					019	00
									PSNGR CAR		01 DRVR	NONE	00 Unk UNK	000	000	00
													UNK			
02384 N N N	08/07/2019 1	6 JIM WRIGHT WY	INTER	3-LEG	Ν	Ν	CLD	ANGL-OTH	01 NONE 9	TURN-L						02
NO RPT	WE	COTTAGE GROVE CONN	CN		STOP SIGN	Ν	DRY	TURN	N/A	E -S					015	00
Ν	11A		01	0		N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 Unk UNK	000	000	00
Ν	43 48 7.52 -123												UNK			
	25.08								02 NONE 9	STRGHT						
									N/A	N -S					000	00
									PSNGR CAR		01 DRVR	NONE	00 Unk UNK	000	000	00
													UNK			

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

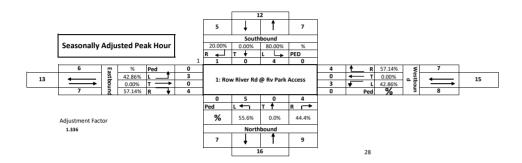
OREGON.. DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

JIM WRIGHT WY at COTTAGE GROVE CONN, City of Cottage Grove, Lane County, 01/01/2015 to 12/31/2019

CDS380 05/28/2021


CITY OF COTTAGE GROVE, LANE COUNTY

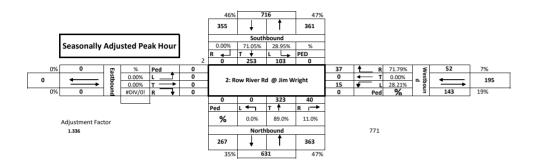
Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submitted of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

Pine Springs at Village Green

SANDOW ENGINEERING

Intersection	on:	1: Row	River Ro	d @ Rv I	Park Acces	s	City:	Cottag	e Grove, O	R													
Counter otal of Al			/ Engine	ering			Date:	Wedne	sday, Febr	uary 23, 2	022												
			South	nbound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedes	trians	
Time Perio	od	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
7:00	7:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	3	5	5		0	0	0	0
7:15	7:30	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1		0	0	0	0
7:30	7:45	0	0	1	1	1	0	2	3	0	0	4	4	1	0	2	3	11		0	0	0	1
7:45	8:00	1	0	0	1	2	0	0	2	3	0	0	3	0	0	0	0	6	23	0	0	0	0
8:00	8:15	0	0	2	2	0	0	0	0	0	0	0	0	1	0	0	1	3	21	0	1	0	1
8:15	8:30	1	0	0	1	1	0	0	1	5	0	0	5	1	0	0	1	8	28	0	0	0	1
8:30	8:45	1	0	1	2	0	0	0	0	4	0	0	4	0	0	1	1	7	24	0	0	0	0
8:45	9:00	0	0	1	1	0	0	1	1	1	0	0	1	0	1	1	2	5	23	0	0	0	0
9:00	9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:15	9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:30	9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:45	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period	Total	3	0	5		4	0	3		13	0	4		6	1	7		46		0	1	0	3
										P	M Peak Hou	r Count Su	mmary										
		S	outhboun	d		v	/estbound			No	orthbound				Eastbound						Pedes	trians	
		Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach			SB	WB	NB	EB
Peak Volum	ies	1	0	3	4	3	0	2	5	3	0	4	7	3	0	2	5	21		0	0	0	0
PHF		0.25	0.00	0.38	0.50	0.38	0.00	0.25	0.42	0.25	0.00	0.25	0.44	0.75	0.00	0.25	0.42	0.48					
Trucks		0	0	0		1	0	0		0	0	1		0	0	1							
% Trucks		0%	0%	0%		33%	0%	0%		0%	0%	25%		0%	0%	50%							

1: Row River Rd @ Rv Park Access


Pedestrians and	nd Cars																					
Time Period		Southb	ound				West	bound				North	bound				Eastbo	und			15 Minute	Hourly
rime r enou	Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Volume	Volume
7:00 AM																	2		3		5	
7:15 AM																	1				1	
7:30 AM		0	0	1			1		2			0		3			1	0	1		9	
7:45 AM		1		0			1		0			3		0			0	0	0		5	20
8:00 AM		0		2		1	0		0			0		0		1	1	0	0		3	18
8:15 AM		1		0			1		0			5		0		1	1	0	0		8	25
8:30 AM		1		1			0		0			4		0			0	0	1		7	23
8:45 AM		0		1			0		1			1		0			0	1	1		5	23
9:00 AM		0		0			0		0			0		0			0	0	0		0	20
9:15 AM																					0	12
9:30 AM																					0	5
9:45 AM																					0	0
Total	0	3	0	5		1	3	0	3		0	13	0	3		2	6	1	6			
Peak Hour	0	1	0	3	0	1	2	0	2	0	0	3	0	3	0	1	3	0	1	0	18	38

Trucks																		
Time Period		Southb	ound			Westb	ound			Northbou	und			East	bound		15 Minute	Hourly
rime r enou	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Volume	Volume
7:00 AM																	0	
7:15 AM																	0	
7:30 AM		0									1				1		2	
7:45 AM					1												1	3
8:00 AM																	0	3
8:15 AM																	0	3
8:30 AM																	0	1
8:45 AM																	0	0
9:00 AM																	0	0
9:15 AM																	0	0
9:30 AM																	0	0
9:45 AM																	0	0
Total	0	0	0		1	0	0		0	0	1		0	0	1			
Peak Hour	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	3	6

Bikes																			
Time Period		Southb	ound			Westb	ound			Northbo	und			Eastbour	d	SB	WB	NB	EB
Time Feriou	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left	30	WB	ND	LD
7:00 AM																0	0	0	0
7:15 AM																0	0	0	0
7:30 AM														1		0	0	0	1
7:45 AM																0	0	0	0
8:00 AM																0	0	0	0
8:15 AM																0	0	0	0
8:30 AM																0	0	0	0
8:45 AM																0	0	0	0
9:00 AM																0	0	0	0
9:15 AM																0	0	0	0
9:30 AM																0	0	0	0
9:45 AM																0	0	0	0
Total	0	0	0		0	0	0		0	0	0		0	1	0				
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1

Pedestrians																			
Time Period		N	E			NM	1			SW				SE		SB	WB	NB	EB
nine Fenou	Left	Right	Total		VV D	IND	ED												
7:00 AM			0				0				0				0	0	0	0	0
7:15 AM			0				0				0				0	0	0	0	0
7:30 AM			0				0				0				0	0	0	0	0
7:45 AM			0				0				0				0	0	0	0	0
8:00 AM			0				0				0				0	0	0	0	0
8:15 AM			0				0				0				0	0	0	0	0
8:30 AM			0				0				0				0	0	0	0	0
8:45 AM			0				0				0				0	0	0	0	0
9:00 AM			0				0				0				0	0	0	0	0
9:15 AM			0				0				0				0	0	0	0	0
9:30 AM			0				0				0				0	0	0	0	0
9:45 AM		1	0				0				0				0	0	0	0	0
Total	0	0	0		0	0	0		0	0	0		0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Counter:		Sandow	v Engine	oring			Date:	Thurse	lay, Februa	ry 24 202	22												
			v Lingine	ering			Date.	muisu	iay, rebiua	1 y 24, 202													
tal of All	ven	cies																					
			South	bound			West	bound			North	ound			Eastb	bound		15	Hourly		Pedest	rians	
Time Period		Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
7:00	7:15	0	39	2	41	8	0	3	11	1	63	0	64	0	0	0	0	116		0	0	0	0
7:15	7:30	0	53	20	73	6	0	3	9	7	61	0	68	0	0	0	0	150		0	0	0	0
7:30	7:45	0	36	18	54	5	0	0	5	9	79	0	88	0	0	0	0	147		0	0	0	0
7:45	8:00	0	43	27	70	5	0	4	9	9	49	0	58	0	0	0	0	137	550	0	0	0	0
8:00	8:15	0	57	12	69	12	0	4	16	5	53	0	58	0	0	0	0	143	577	0	0	0	0
8:15	8:30	0	37	18	55	13	0	2	15	5	62	0	67	0	0	0	0	137	564	0	0	0	0
8:30	8:45	0	44	23	67	12	0	4	16	6	49	0	55	0	0	0	0	138	555	0	0	0	0
8:45	9:00	0	47	11	58	15	0	6	21	7	67	0	74	0	0	0	0	153	571	0	0	0	0
9:00	9:15	0	2	0	2	0	0	0	0	1	5	0	6	0	0	0	0	8		0	0	0	0
9:15	9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:30	9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period Tot	al	0	358	131		76	0	26		50	488	0		0	0	0		1129		0	0	0	0
										Р	M Peak Hou	r Count Su	immary										
		5	outhbound			v	Vestbound				orthbound				Eastbound						Pedest	rians	
	-	Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach			SB	WB	NB	EB
Peak Volumes		0	189	77	266	28	0	11	39	30	242	0	272	0	0	0	0	577		0	0	0	0
PHF		0.00	0.83	0.71	0.91	0.58	0.00	0.69	0.61	0.83	0.77	0.00	0.77	0.00	0.00	0.00	0.00	0.96					
Trucks		0	15	1		0	0	0		0	16	0		0	0	0							
% Trucks		0%	8%	1%		0%	0%	0%		0%	7%	0%	1	0%	0%	0%	1						

2: Row River Rd @ Jim Wright

Pedestrians an	nd Cars																					
Time Period		Southb	ound				West	bound				North	bound				Eastbo	und			15 Minute	Hourly
Time Feriou	Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Volume	Volume
7:00 AM			34	2			7		3			1	60								107	
7:15 AM			50	20			6		3			7	60								146	
7:30 AM			33	18			5		0			9	69								134	
7:45 AM			42	26			5		4			9	48								134	521
8:00 AM			54	12			12		4			5	49								136	550
8:15 AM			34	18			13		2			5	56								128	532
8:30 AM			40	22			12		4			6	47								131	529
8:45 AM			42	11			15		6			7	63								144	539
9:00 AM			1	0			0		0			1	5								7	410
9:15 AM																					0	282
9:30 AM																					0	151
9:45 AM																					0	7
Total	0	0	330	129		0	75	0	26		0	50	457	0		0	0	0	0			
Peak Hour	0	0	163	74	0	0	35	0	10	0	0	28	222	0	0	0	0	0	0	0	532	1603

Trucks																		
Time Period		Southb	ound			Westb	ound			Northbo	und			East	bound		15 Minute	Hourly
rime r enou	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Volume	Volume
7:00 AM		5	0		1					3							9	
7:15 AM		3	0							1							4	
7:30 AM		3	0							10							13	
7:45 AM		1	1							1							3	29
8:00 AM		3	0							4							7	27
8:15 AM		3	0							6							9	32
8:30 AM		4	1							2							7	26
8:45 AM		5	0							4							9	32
9:00 AM		1	0							0							1	26
9:15 AM																	0	17
9:30 AM																	0	10
9:45 AM																	0	1
Total	0	28	2		1	0	0		0	31	0		0	0	0			
Peak Hour	0	15	1	0	0	0	0	0	0	16	0	0	0	0	0	0	32	117

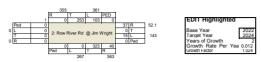
Bikes

Time Period		Southb	ound			Westbo	ound			Northbo	und			Eastboun	d	SB	WB	NB	EB
rime Feriou	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left	30	WD	ND	LD
7:00 AM																0	0	0	0
7:15 AM																0	0	0	0
7:30 AM																0	0	0	0
7:45 AM																0	0	0	0
8:00 AM																0	0	0	0
8:15 AM																0	0	0	0
8:30 AM																0	0	0	0
8:45 AM																0	0	0	0
9:00 AM																0	0	0	0
9:15 AM																0	0	0	0
9:30 AM																0	0	0	0
9:45 AM																0	0	0	0
Total	0	0	0		0	0	0		0	0	0		0	0	0				
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrians

Time Period		N	E			NV	/			SW				SE		SB	WB	NB	EB
rime Feriou	Left	Right	Total		Left	Right	Total		Left	Right	Total		Left	Right	Total	30			
7:00 AM																0	0	0	0
7:15 AM																0	0	0	0
7:30 AM																0	0	0	0
7:45 AM																0	0	0	0
8:00 AM																0	0	0	0
8:15 AM																0	0	0	0
8:30 AM																0	0	0	0
8:45 AM																0	0	0	0
9:00 AM																0	0	0	0
9:15 AM																0	0	0	0
9:30 AM																0	0	0	0
9:45 AM		1														0	0	0	0
Total	0	0	0		0	0	0		0	0	0		0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

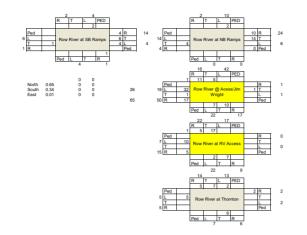
Global Peak Hour


				Intersection	IS	
		1: Row River Rd @ Rv Park Access	2: Row River Rd @ Jim Wright			
Time P	Period	Volume	Volume	Total		
7:00 AM	8:00 AM	23	550	573	7:00 AM	8:00 AM
7:15 AM	8:15 AM	21	577	598	7:15 AM	8:15 AM
7:30 AM	8:30 AM	28	564	592	7:30 AM	8:30 AM
7:45 AM	8:45 AM	24	555	579	7:45 AM	8:45 AM
8:00 AM	9:00 AM	23	571	594	8:00 AM	9:00 AM
		28	577	598		-

Peak Hour 7:15 AM

7:30 AM 7:45 AM 8:00 AM


2022 Background


2024 AM Volumes Background

								SEASO	ONAL TREND	TABLE (Updated	: 7/20/20	21) ¹												Peak Period
TREND	1-Jan	15-Jan	1-Feb	15-Feb	1-Mar	15-Mar	1-Apr	15-Apr	1-May	15-May	1-Jun	15-Jun	1-Jul	15-Jul	1-Aug	15-Aug	1-Sep	15-Sep	1-Oct	15-Oct	1-Nov	15-Nov	1-Dec	15-Dec	Eactor
INTERSTATE URBANIZED	1.0672	1.0684	1.0922	1.1160	1.0605	1.0050	0.9923	0.9796	0.9781	0.9767	0.9615	0.9463	0.9517	0.9571	0.9551	0.9531	0.9674	0.9816	0.9850	0.9884	1.0045	1.0206	1.0322	1.0438	0.9463
INTERSTATE NONURBANIZED	1.2426	1.2883	1.3750	1.4616	1.2645	1.0673	1.0382	1.0092	0.9798	0.9504	0.9005	0.8506	0.8322	0.8139	0.8221	0.8302	0.8719	0.9135	0.9441	0.9747	1.0178	1.0608	1.1123	1.1638	0.8139
COMMUTER	1.0850	1.0875	1.1183	1.1492	1.0880	1.0268	1.0014	0.9759	0.9705	0.9650	0.9503	0.9355	0.9470	0.9585	0.9509	0.9433	0.9528	0.9623	0.9614	0.9604	0.9938	1.0272	1.0474	1.0676	0.9355
COASTAL DESTINATION	1.1885	1.1712	1.2001	1.2289	1.1242	1.0194	1.0316	1.0437	1.0080	0.9723	0.9347	0.8972	0.8612	0.8252	0.8205	0.8159	0.8686	0.9214	0.9689	1.0164	1.0660	1.1156	1.1580	1.2005	0.8159
COASTAL DESTINATION ROUTE	1.3445	1.3248	1.4108	1.4968	1.2858	1.0747	1.0911	1.1076	1.0274	0.9473	0.8941	0.8409	0.7820	0.7231	0.7218	0.7205	0.8016	0.8827	0.9669	1.0511	1.1133	1.1754	1.2480	1.3206	0.7205
AGRICULTURE	1.4583	1.4827	1.5763	1.6700	1.4596	1.2492	1.1487	1.0482	0.9747	0.9011	0.8579	0.8146	0.8058	0.7970	0.7922	0.7873	0.7772	0.7670	0.8288	0.8905	0.9947	1.0989	1.2462	1.3934	0.7670
RECREATIONAL SUMMER	1.5848	1.6474	1.7861	1.9247	1.6595	1.3942	1.2973	1.2004	1.0517	0.9029	0.8256	0.7484	0.7018	0.6552	0.6708	0.6864	0.7393	0.7922	0.8898	0.9874	1.1242	1.2610	1.3965	1.5320	0.6552
RECREATIONAL SUMMER WINTER	0.8736	0.8525	0.9330	1.0135	1.0146	1.0158	1.1492	1.2825	1.1763	1.0700	0.9760	0.8821	0.8005	0.7190	0.7305	0.7420	0.8897	1.0374	1.2010	1.3645	1.5212	1.6778	1.3812	1.0847	0.7190
RECREATIONAL WINTER	0.6997	0.6389	0.6561	0.6733	0.7219	0.7704	1.0580	1.3455	1.3746	1.4038	1.2832	1.1625	0.9985	0.8344	0.8600	0.8857	1.0560	1.2262	1.4100	1.5937	1.8758	2.1580	1.5328	0.9076	0.6389
SUMMER	1.2151	1.2357	1.3129	1.3901	1.2520	1.1139	1.0620	1.0100	0.9718	0.9336	0.8976	0.8615	0.8457	0.8299	0.8354	0.8410	0.8743	0.9077	0.9357	0.9638	1.0273	1.0908	1.1322	1.1737	0.8299
SUMMER < 2500	1.3035	1.3186	1.3817	1.4448	1.2869	1.1289	1.0598	0.9906	0.9480	0.9053	0.8720	0.8387	0.8237	0.8086	0.8229	0.8373	0.8616	0.8859	0.9233	0.9607	1.0428	1.1249	1.2016	1.2783	0.8086

* Sessonal Trend Table factors are based on previous year ATR data. The table is updated yearly. * Grey shading indicates months were seasonal factor is greater than or less than 30% * February 2019 snow event causing lower seasonal factors

nal Trend Table: The 2020 table is based on 2019 values due to the irregul

 August Count
 Peak
 Februay Count
 Peak

 Commuter
 0.9433
 0.9355
 1.08344
 Commuter
 1.0880
 0.9355
 1.163004

 Summer
 0.8410
 0.8294
 1.013358
 Summer
 1.2520
 0.8294
 1.036 Average

 1.011
 Average
 1.336
 Average
 1.336
 Average

2020 c

int year.

Row River	2014	2035	
Row River	485	2035	
	770	958	0.010928
	730	885	0.010920
	410	550	0.012322
	420	510	0.0.12022
	455	610	0.013333
	370	450	
	406	545	0.013439
	290	350	
	305	410	0.013205
	315	390	
	295	370	0.01171
	A	/erage	0.01249
I-5 SB	2014	2035	
	170	205	
	895	1090	0.010284
	0011	0005	
	2014	2035	
I-5 NB	475	580	0.040404
	120	145	0.010404
Thornton			
momon	150	205	
	145	205 175	0.013721
	145	175	0.013/21
	75	90	0.010582
		30	0.010002

Average Entire Study area 0.012

Intersect	ion:	1: Row	River Ro	1 @ RV	Access		City:	Cottage	e Grove, O	R													
Counte otal of A			/ Engine	ering			Date:	Wedne	sday, Febr	uary 23, 2	022												
			South	nbound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedes	trians	
Time Peri	iod	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
16:00	16:15	2	93	0	95	1	0	2	3	2	86	0	88	0	0	1	1	187		1	0	0	0
16:15	16:30	0	76	0	76	1	0	1	2	1	91	0	92	2	0	0	2	172		1	1	0	0
16:30	16:45	1	79	2	82	2	0	1	3	1	100	3	104	0	0	2	2	191		0	0	0	0
16:45	17:00	1	99	1	101	0	0	0	0	2	83	0	85	1	0	0	1	187	737	0	0	0	0
17:00	17:15	2	90	0	92	2	0	2	4	2	89	0	91	2	0	0	2	189	739	0	0	0	0
17:15	17:30	0	95	0	95	2	0	1	3	2	85	0	87	1	0	1	2	187	754	0	0	0	0
17:30	17:45	7	116	3	126	0	0	0	0	5	101	1	107	3	0	2	5	238	801	0	0	0	0
17:45	18:00	1	73	0	74	2	1	1	4	4	87	1	92	0	0	1	1	171	785	0	0	0	0
18:00	18:15	0	2	0	2	0	0	0	0	1	1	0	2	0	0	0	0	4		0	0	0	0
18:15	18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
18:30	18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
18:45	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period	d Total	14	723	6		10	1	8		20	723	5		9	0	7		1526		2	1	0	0
										P	M Peak Hou	r Count Su	mmary										
		S	outhbound	d		v	/estbound			No	orthbound				Eastbound						Pedes	trians	
		Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach			SB	WB	NB	EE
Peak Volur	mes	10	400	4	414	4	0	3	7	11	358	1	370	7	0	3	10	801		0	0	0	0
PHF		0.36	0.86	0.33	0.82	0.50	0.00	0.38	0.44	0.55	0.89	0.25	0.86	0.58	0.00	0.38	0.50	0.84					
Trucks		0	8	0		0	0	0		0	15	0		0	0	0							
% Truck	s	0%	2%	0%		0%	0%	0%		0%	4%	0%		0%	0%	0%							

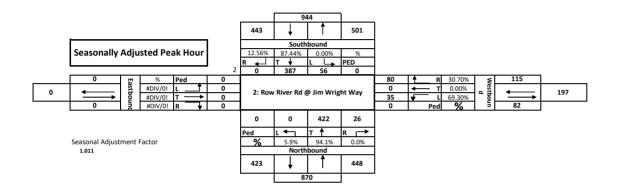
1: Row River Rd @ RV Access

Pedestrians ar					1						1					1						
Time Period		Southb	ound				West	bound				North	bound				Eastbo	und			15 Minute	Hourly
nine renou	Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Volume	Volume
4:00 PM		2	88	0			1	0		2		2	84	0			0		1		180	
4:15 PM		0	75	0		1	1	0		1		1	88	0			2		0		168	
4:30 PM		1	76	2			1	0		1		1	98	3			0		2		185	
4:45 PM		1	98	1			0	0)		2	81	0	1		1		0		184	717
5:00 PM		2	86	0			2	0	:	2		2	83	0			2		0		179	716
5:15 PM		0	92	0			2	0		1		2	83	0	1		1		1		182	730
5:30 PM		7	116	3			0	0)		5	96	1			3		2		233	778
5:45 PM		1	73	0			2	1		1		4	87	1			0		1		171	765
6:00 PM		0	2	0			0	0		0		1	1	0			0		0		4	590
6:15 PM																					0	408
6:30 PM																					0	175
6:45 PM																					0	4
Total	0	14	706	6		1	9	1	8		0	20	701	5		0	9	0	7			
Peak Hour	0	4	392	4	0	0	4	0	3	0	0	11	343	1	0	0	7	0	3	0	778	2941

Time Period		Southb	ound			Westb	ound			Northbo	und			East	bound		15 Minute	Hourly
Time Period	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Volume	Volume
4:00 PM		5			0					2							7	
4:15 PM		1			0					3							4	
4:30 PM		3			1					2							6	
4:45 PM		1			0					2							3	20
5:00 PM		4			0					6							10	23
5:15 PM		3			0					2							5	24
5:30 PM		0			0					5							5	23
5:45 PM		0			0					0							0	20
6:00 PM		0			0					0							0	10
6:15 PM																	0	5
6:30 PM																	0	0
6:45 PM																	0	0
Total	0	17	0		1	0	0		0	22	0		0	0	0			
Peak Hour	0	8	0	0	0	0	0	0	0	15	0	0	0	0	0	0	23	90

		Southb	hund			Westbo	hund			Northbo	und			Eastboun	4				
Time Period	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left	SB	WB	NB	EB
4:00 PM	•	1			-				-							1	0	0	0
4:15 PM		1														1	0	0	0
4:30 PM																0	0	0	0
4:45 PM																0	0	0	0
5:00 PM																0	0	0	0
5:15 PM																0	0	0	0
5:30 PM																0	0	0	0
5:45 PM																0	0	0	0
6:00 PM																0	0	0	0
6:15 PM																0	0	0	0
6:30 PM																0	0	0	0
6:45 PM																0	0	0	0
Total	0	2	0		0	0	0		0	0	0		0	0	0				
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Time Period		N	E			NV	v			SW				SE		SB	WB	NB	EB
rime Period	Left	Right	Total		Left	Right	Total		Left	Right	Total		Left	Right	Total	38	WB	NB	EB
4:00 PM			0				0				0				0	0	0	0	0
4:15 PM			0				0				0				0	0	0	0	0
4:30 PM			0				0				0				0	0	0	0	0
4:45 PM			0				0				0				0	0	0	0	0
5:00 PM			0				0				0				0	0	0	0	0
5:15 PM			0				0				0				0	0	0	0	0
5:30 PM			0				0				0				0	0	0	0	0
5:45 PM			0				0				0				0	0	0	0	0
6:00 PM			0				0				0				0	0	0	0	0
6:15 PM			0				0				0				0	0	0	0	0
6:30 PM			0				0				0				0	0	0	0	0
6:45 PM			0				0				0				0	0	0	0	0
Total	0	0	0		0	0	0		0	0	0		0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


2: Row River Rd @ Jim Wright Way	City: Cottage Grove, OR
----------------------------------	-------------------------

Counter: Total of All Veh	Sandow Engineering icles	-	-	Date:	Wednesda	ay, August 4, 2021

Intersection:

	Time Period Righ		Sout	hbound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedest	rians	
Time P			Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
16:00	16:15	0	94	16	110	22	0	10	32	7	110	0	117	3	1	1	5	264		0	0	0	0
16:15	16:30	0	77	20	97	20	0	8	28	7	100	0	107	2	0	1	3	235		0	0	0	0
16:30	16:45	0	82	16	98	25	0	11	36	9	107	0	116	0	0	0	0	250		0	0	0	0
16:45	17:00	0	87	19	106	21	0	8	29	5	103	0	108	0	0	0	0	243	992	0	0	0	0
17:00	17:15	0	98	12	110	20	0	11	31	6	118	0	124	0	0	0	0	265	993	0	0	0	0
17:15	17:30	0	98	11	109	14	0	9	23	8	92	0	100	0	0	0	0	232	990	0	0	0	0
17:30	17:45	0	100	13	113	24	0	7	31	7	104	0	111	0	0	0	0	255	995	0	0	0	0
17:45	18:00	0	76	18	94	14	0	4	18	6	99	0	105	1	0	0	1	218	970	0	0	0	0
18:00	18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	705	0	0	0	0
18:15	18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	473	0	0	0	0
Count Per	iod Total	0	712	125		160	0	68		55	833	0		6	1	2		1962		0	0	0	0
																				-			
										PI	M Peak Hou	ir Count Sui	mmary										

	Fivi Feak hour Count Summary																					
		Southbound		ł		v	Vestbound			No	orthbound				Eastbound					Pedest	rians	
		Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach	Right	Thru	Left	Approach		SB	WB	NB	EB
Peak	Volumes	0	383	55	438	79	0	35	114	26	417	0	443	0	0	0	0	995	0	0	0	0
1	PHF	0.00	0.96	0.72	0.97	0.82	0.00	0.80	0.92	0.81	0.88	0.00	0.89	0.00	0.00	0.00	0.00	0.94				
Tr	rucks	0	17	1		0	0	0		0	4	0		0	0	0						
% 1	Trucks	0%	4%	2%		0%	0%	0%		0%	1%	0%		0%	0%	0%						

2: Row River Rd @ Jim Wright Way

Pedestrians and Cars

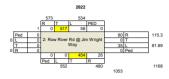
Time Period		Southb	ound				West	bound				North	bound				Eastbo	und			15 Minute	Hourly
Time Period	Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Peds	Right	Thru	Left		Volume	Volume
4:00 PM	0		89	15		0	22		10		0	7	106			0	3	1	1		254	
4:15 PM	0		74	20		0	18		8		0	6	98			0	2		1		227	
4:30 PM	0		80	16		0	25		11		0	9	107			0					248	
4:45 PM	0		82	18		0	21		8		0	5	102			0					236	965
5:00 PM	0		96	12		0	20		11		0	6	115			0					260	971
5:15 PM	0		94	11		0	14		9		0	8	92			0					228	972
5:30 PM	0		94	13		0	24		7		0	7	104			0					249	973
5:45 PM	0		76	18		0	14		4		0	5	97			0	1				215	952
6:00 PM	0					0					0					0					0	692
6:15 PM	0					0					0					0					0	464
Total	0	0	685	123		0	158	0	68		0	53	821	0		0	6	1	2			
Peak Hour	0	0	366	54	0	0	79	0	35	0	0	26	413	0	0	0	0	0	0	0	973	3881

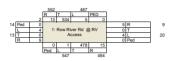
EB

Trucks

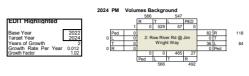
Time Period		Southb	ound			Westb	ound			Northbo	und			East	bound		15 Minute	Hourly
rime Periou	Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Right	Thru	Left		Volume	Volume
4:00 PM		5	1							4							10	
4:15 PM		3	0		2				1	2							8	
4:30 PM		2	0														2	
4:45 PM		5	1							1							7	27
5:00 PM		2								3							5	22
5:15 PM		4															4	18
5:30 PM		6															6	22
5:45 PM		0							1	2							3	18
6:00 PM																	0	13
6:15 PM																	0	9
Total	0	27	2		2	0	0		2	12	0		0	0	0			
Peak Hour	0	17	1	0	0	0	0	0	0	4	0	0	0	0	0	0	22	89

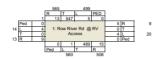
Bikes Southbound Westbound Northbound Eastbound Time Period SB WB NB Right Thru Left Left Thru Left Right Thru Left Right Thru Right 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 0 0 0 0 0 0 Total 0 Peak Hour

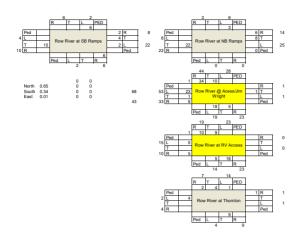

Pedestrians NE NW SW SE SB WB NB EB Time Period Left Right Left Right Left Left Total Total Total Right Total Right 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM Total Peak Hour


Global Peak Hour

				Intersection	IS	
		1: Row River Rd @ RV Access	2: Row River Rd @ Jim Wright Way			
Time F	Period	Volume	Volume	Total		
4:00 PM	5:00 PM	737	992	1729	4:00 PM	5:00 PM
4:15 PM	5:15 PM	739	993	1732	4:15 PM	5:15 PM
4:30 PM	5:30 PM	754	990	1744	4:30 PM	5:30 PM
4:45 PM	5:45 PM	801	995	1796	4:45 PM	5:45 PM
5:00 PM	6:00 PM	785	970	1755	5:00 PM	6:00 PM
		801	995	1796		-


Peak Hour 4:45 PM


5:00 PM 5:15 PM 5:30 PM



								SEASO	NAL TREN	TABLE (Undated	7/20/203	H)1												Peak Period
TREND	1-Jan	15-Jan	1-Feb	15-Feb	1-Mar	15-Mar	1-Apr	15-Apr	1-May	15-May		15-Jun	1-Jul	15-Jul	1-Aug	15-Aug	1-Sep	15-Sep	1-Oct	15-Oct	1-Nov	15-Nov	1-Dec	15-Dec	Factor
INTERSTATE URBANIZED	1.0672	1.0684	1.0922	1.1160	1.0605	1.0050	0.9923	0.9796	0.9781	0.9767	0.9615	0.9463	0.9517	0.9571	0.9551	0.9531	0.9674	0.9816	0.9850	0.9884	1.0045	1.0206	1.0322	1.0438	0.9463
INTERSTATE NONURBANIZED	1.2426	1.2883	1.3750	1.4616	1.2645	1.0673	1.0382	1.0092	0.9798	0.9504	0.9005	0.8506	0.8322	0.8139	0.8221	0.8302	0.8719	0.9135	0.9441	0.9747	1.0178	1.0608	1.1123	1.1638	0.8139
COMMUTER	1.0850	1.0875	1.1183	1.1492	1.0880	1.0268	1.0014	0.9759	0.9705	0.9650	0.9503	0.9355	0.9470	0.9585	0.9509	0.9433	0.9528	0.9623	0.9614	0.9604	0.9938	1.0272	1.0474	1.0676	0.9355
COASTAL DESTINATION	1.1885	1.1712	1.2001	1.2289	1.1242	1.0194	1.0316	1.0437	1.0080	0.9723	0.9347	0.8972	0.8612	0.8252	0.8205	0.8159	0.8686	0.9214	0.9689	1.0164	1.0660	1.1156	1.1580	1.2005	0.8159
COASTAL DESTINATION ROUTE	1.3445	1.3248	1.4108	1.4968	1.2858	1.0747	1.0911	1.1076	1.0274	0.9473	0.8941	0.8409	0.7820	0.7231	0.7218	0.7205	0.8016	0.8827	0.9669	1.0511	1.1133	1.1754	1.2480	1.3206	0.7205
AGRICULTURE	1.4583	1.4827	1.5763	1.6700	1.4596	1.2492	1.1487	1.0482	0.9747	0.9011	0.8579	0.8146	0.8058	0.7970	0.7922	0.7873	0.7772	0.7670	0.8288	0.8905	0.9947	1.0989	1.2462	1.3934	0.7670
RECREATIONAL SUMMER	1.5848	1.6474	1.7861	1.9247	1.6595	1.3942	1.2973	1.2004	1.0517	0.9029	0.8256	0.7484	0.7018	0.6552	0.6708	0.6864	0.7393	0.7922	0.8898	0.9874	1.1242	1.2610	1.3965	1.5320	0.6552
RECREATIONAL SUMMER WINTER	0.8736	0.8525	0.9330	1.0135	1.0146	1.0158	1.1492	1.2825	1.1763	1.0700	0.9760	0.8821	0.8005	0.7190	0.7305	0.7420	0.8897	1.0374	1.2010	1.3645	1.5212	1.6778	1.3812	1.0847	0.7190
RECREATIONAL WINTER	0.6997	0.6389	0.6561	0.6733	0.7219	0.7704	1.0580	1.3455	1.3746	1.4038	1.2832	1.1625	0.9985	0.8344	0.8600	0.8857	1.0560	1.2262	1.4100	1.5937	1.8758	2.1580	1.5328	0.9076	0.6389
SUMMER	1.2151	1.2357	1.3129	1.3901	1.2520	1.1139	1.0620	1.0100	0.9718	0.9336	0.8976	0.8615	0.8457	0.8299	0.8354	0.8410	0.8743	0.9077	0.9357	0.9638	1.0273	1.0908	1.1322	1.1737	0.8299
SUMMER < 2500	1.3035	1.3186	1.3817	1.4448	1.2869	1.1289	1.0598	0.9906	0.9480	0.9053	0.8720	0.8387	0.8237	0.8086	0.8229	0.8373	0.8616	0.8859	0.9233	0.9607	1.0428	1.1249	1.2016	1.2783	0.8086
* Seasonal Trend Table factors are based on prev					yearly.																				
* Grey shading indicates months were seasonal f	factor is gri	eater than e	or less that	n 30%																					

* February 2019 snow event causing lower seasonal factors ¹Seasonal Trend Table: The 2020 table is based on 2019 values due to the irregula

rity caused by the Covid epi during the 2020 count year.

August Court Peak August Court Peak Court August Court

Row River	2014	2035	
	485	585	
	770	958	0.010928
	730	885	
	410	550	0.012322
	420	510	
	455	610	0.013333
	370	450	
	406	545	0.013439
	290	350	
	305	410	0.013205
	315	390	
	295	370	0.01171
		Avorago	0 01240

Average 0.01249

I-5 SB	2014	2035	
	170	205	
	895	1090	0.010284
	2014	2035	
I-5 NB	475	580	
	120	145	0.010404
Thornton			

150		
145	175	0.013721
105	130	
75	90	0.010582

Pine Springs at Village Green

SANDOW ENGINEERING

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$		5	f,		7	et i		
Traffic Vol, veh/h	3	0	4	3	0	4	5	356	4	4	262	1	
Future Vol, veh/h	3	0	4	3	0	4	5	356	4	4	262	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	0	11	0	
Mvmt Flow	3	0	4	3	0	4	5	371	4	4	273	1	

Major/Minor	Minor2		Ν	1inor1		I	Major1		Ν	/lajor2			
Conflicting Flow All	667	667	274	667	665	373	274	0	0	375	0	0	
Stage 1	282	282	-	383	383	-	-	-	-	-	-	-	
Stage 2	385	385	-	284	282	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	375	382	770	375	383	678	1301	-	-	1195	-	-	
Stage 1	729	681	-	644	616	-	-	-	-	-	-	-	
Stage 2	642	614	-	727	681	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 371	379	770	371	380	678	1301	-	-	1195	-	-	
Mov Cap-2 Maneuver	· 371	379	-	371	380	-	-	-	-	-	-	-	
Stage 1	726	679	-	641	614	-	-	-	-	-	-	-	
Stage 2	636	612	-	721	679	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	11.9	12.3	0.1	0.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1301	-	-	527	501	1195	-	-
HCM Lane V/C Ratio	0.004	-	-	0.014	0.015	0.003	-	-
HCM Control Delay (s)	7.8	-	-	11.9	12.3	8	-	-
HCM Lane LOS	А	-	-	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0	0	0	-	-

2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		٦	Þ			4		۲	Þ		
Traffic Vol, veh/h	0	0	0	15	0	37	0	323	40	103	253	0	
Future Vol, veh/h	0	0	0	15	0	37	0	323	40	103	253	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	2	8	0	
Mvmt Flow	0	0	0	16	0	39	0	336	42	107	264	0	

Major/Minor	Minor2		Ν	linor1		1	Major1		Ν	1ajor2			
Conflicting Flow All	855	856	264	835	835	357	264	0	0	378	0	0	
Stage 1	478	478	-	357	357	-	-	-	-	-	-	-	
Stage 2	377	378	-	478	478	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.218	-	-	
Pot Cap-1 Maneuver	281	297	780	289	306	692	1312	-	-	1180	-	-	
Stage 1	572	559	-	665	632	-	-	-	-	-	-	-	
Stage 2	649	619	-	572	559	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	247	270	780	269	278	692	1312	-	-	1180	-	-	
Mov Cap-2 Maneuver	247	270	-	269	278	-	-	-	-	-	-	-	
Stage 1	572	508	-	665	632	-	-	-	-	-	-	-	
Stage 2	613	619	-	520	508	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	13	0	2.4	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR EB	Ln1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	1312	-	-	-	269	692	1180	-	-
HCM Lane V/C Ratio	-	-	-	-	0.058	0.056	0.091	-	-
HCM Control Delay (s)	0	-	-	0	19.2	10.5	8.4	-	-
HCM Lane LOS	А	-	-	Α	С	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	-	0.2	0.2	0.3	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDN	VVDL		WDR	INDL		NDN	JDL		JDR	
Lane Configurations		4			4		1	-Fr		1	F		
Traffic Vol, veh/h	4	0	9	4	0	5	1	478	15	5	534	13	
Future Vol, veh/h	4	0	9	4	0	5	1	478	15	5	534	13	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84	
Heavy Vehicles, %	0	0	0	0	0	0	0	4	0	0	2	0	
Mvmt Flow	5	0	11	5	0	6	1	569	18	6	636	15	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		N	lajor2				
Conflicting Flow All	1239	1245	644	1241	1243	578	651	0	0	587	0	0		
Stage 1	656	656	-	580	580	-	-	-	-	-	-	-		
Stage 2	583	589	-	661	663	-	-	-	-	-	-	-		
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-		
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-		
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-		
Pot Cap-1 Maneuver	154	176	476	153	176	519	945	-	-	998	-	-		
Stage 1	458	465	-	504	503	-	-	-	-	-	-	-		
Stage 2	502	499	-	455	462	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	151	175	476	149	175	519	945	-	-	998	-	-		
Mov Cap-2 Maneuver	151	175	-	149	175	-	-	-	-	-	-	-		
Stage 1	458	462	-	503	502	-	-	-	-	-	-	-		
Stage 2	496	499	-	442	459	-	-	-	-	-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	18.3	20.2	0	0.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	945	-	-	286	247	998	-	-
HCM Lane V/C Ratio	0.001	-	-	0.054	0.043	0.006	-	-
HCM Control Delay (s)	8.8	-	-	18.3	20.2	8.6	-	-
HCM Lane LOS	А	-	-	С	С	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0.1	0	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	ħ			4		٦	Þ		
Traffic Vol, veh/h	0	0	0	35	0	80	0	454	26	56	517	0	
Future Vol, veh/h	0	0	0	35	0	80	0	454	26	56	517	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	0	0	0	0	0	0	1	0	2	4	0	
Mvmt Flow	0	0	0	37	0	85	0	483	28	60	550	0	

Major/Minor	Minor2		ľ	/linor1		1	Major1		Ν	1ajor2				
Conflicting Flow All	1210	1181	550	1167	1167	497	550	0	0	511	0	0		
Stage 1	670	670	-	497	497	-	-	-	-	-	-	-		
Stage 2	540	511	-	670	670	-	-	-	-	-	-	-		
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-		
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-		
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.218	-	-		
Pot Cap-1 Maneuver	161	192	539	172	195	577	1030	-	-	1054	-	-		
Stage 1	450	459	-	559	548	-	-	-	-	-	-	-		
Stage 2	530	540	-	450	459	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	· 131	181	539	164	184	577	1030	-	-	1054	-	-		
Mov Cap-2 Maneuver	· 131	181	-	164	184	-	-	-	-	-	-	-		
Stage 1	450	433	-	559	548	-	-	-	-	-	-	-		
Stage 2	452	540	-	424	433	-	-	-	-	-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	18.7	0	0.8	
HCM LOS	А	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR EB	Ln1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	1030	-	-	-	164	577	1054	-	-
HCM Lane V/C Ratio	-	-	-	-	0.227	0.147	0.057	-	-
HCM Control Delay (s)	0	-	-	0	33.3	12.3	8.6	-	-
HCM Lane LOS	А	-	-	А	D	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	-	0.8	0.5	0.2	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$		5	ħ		7	et i		
Traffic Vol, veh/h	3	0	4	3	0	4	5	365	4	4	268	1	
Future Vol, veh/h	3	0	4	3	0	4	5	365	4	4	268	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	0	11	0	
Mvmt Flow	3	0	4	3	0	4	5	380	4	4	279	1	

Major/Minor	Minor2		Ν	1inor1		ľ	Major1		Ν	/lajor2			
Conflicting Flow All	682	682	280	682	680	382	280	0	0	384	0	0	
Stage 1	288	288	-	392	392	-	-	-	-	-	-	-	
Stage 2	394	394	-	290	288	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	367	375	764	367	376	670	1294	-	-	1186	-	-	
Stage 1	724	677	-	637	610	-	-	-	-	-	-	-	
Stage 2	635	609	-	722	677	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	⁻ 363	372	764	363	373	670	1294	-	-	1186	-	-	
Mov Cap-2 Maneuver	⁻ 363	372	-	363	373	-	-	-	-	-	-	-	
Stage 1	721	675	-	634	608	-	-	-	-	-	-	-	
Stage 2	629	607	-	716	675	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	12	12.4	0.1	0.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1294	-	-	519	492	1186	-	-
HCM Lane V/C Ratio	0.004	-	-	0.014	0.015	0.004	-	-
HCM Control Delay (s)	7.8	-	-	12	12.4	8	-	-
HCM Lane LOS	А	-	-	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0	0	0	-	-

2

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		٦	ħ			4		۲	Þ		
Traffic Vol, veh/h	0	0	0	15	0	38	0	331	41	105	259	0	
Future Vol, veh/h	0	0	0	15	0	38	0	331	41	105	259	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	2	8	0	
Mvmt Flow	0	0	0	16	0	40	0	345	43	109	270	0	

Major/Minor	Minor2		Ν	1inor1		ľ	Major1		Ν	lajor2			
Conflicting Flow All	875	876	270	855	855	367	270	0	0	388	0	0	
Stage 1	488	488	-	367	367	-	-	-	-	-	-	-	
Stage 2	387	388	-	488	488	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	- 3	2.218	-	-	
Pot Cap-1 Maneuver	272	290	774	281	298	683	1305	-	-	1170	-	-	
Stage 1	565	553	-	657	626	-	-	-	-	-	-	-	
Stage 2	641	612	-	565	553	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	238	263	774	261	270	683	1305	-	-	1170	-	-	
Mov Cap-2 Maneuver	- 238	263	-	261	270	-	-	-	-	-	-	-	
Stage 1	565	502	-	657	626	-	-	-	-	-	-	-	
Stage 2	604	612	-	512	502	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	13.2	0	2.4	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR EB	Ln1W	/BLn1\	WBLn2	SBL	SBT	SBR
Capacity (veh/h)	1305	-	-	-	261	683	1170	-	-
HCM Lane V/C Ratio	-	-	-	-	0.06	0.058	0.093	-	-
HCM Control Delay (s)	0	-	-	0	19.7	10.6	8.4	-	-
HCM Lane LOS	А	-	-	А	С	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	-	0.2	0.2	0.3	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDN	VVDL		WDR	INDL		NDN	JDL		JDR	
Lane Configurations		4			4		1	-Fr		1	F		
Traffic Vol, veh/h	4	0	9	4	0	5	1	489	15	5	547	13	
Future Vol, veh/h	4	0	9	4	0	5	1	489	15	5	547	13	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84	
Heavy Vehicles, %	0	0	0	0	0	0	0	4	0	0	2	0	
Mvmt Flow	5	0	11	5	0	6	1	582	18	6	651	15	

Major/Minor	Minor2		N	/linor1		Ν	1ajor1		N	lajor2			
Conflicting Flow All	1267	1273	659	1269	1271	591	666	0	0	600	0	0	
Stage 1	671	671	-	593	593	-	-	-	-	-	-	-	
Stage 2	596	602	-	676	678	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	147	169	467	147	169	511	933	-	-	987	-	-	
Stage 1	449	458	-	496	497	-	-	-	-	-	-	-	
Stage 2	494	492	-	446	455	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 145	168	467	143	168	511	933	-	-	987	-	-	
Mov Cap-2 Maneuver	· 145	168	-	143	168	-	-	-	-	-	-	-	
Stage 1	449	455	-	496	497	-	-	-	-	-	-	-	
Stage 2	488	492	-	433	452	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	18.8	20.8	0	0.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	933	-	-	277	238	987	-	-
HCM Lane V/C Ratio	0.001	-	-	0.056	0.045	0.006	-	-
HCM Control Delay (s)	8.9	-	-	18.8	20.8	8.7	-	-
HCM Lane LOS	А	-	-	С	С	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0.1	0	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	f,			4		7	ţ,		
Traffic Vol, veh/h	0	0	0	36	0	82	0	465	27	57	529	0	
Future Vol, veh/h	0	0	0	36	0	82	0	465	27	57	529	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	0	0	0	0	0	0	1	0	2	4	0	
Mvmt Flow	0	0	0	38	0	87	0	495	29	61	563	0	

Major/Minor	Minor2		Ν	/linor1			Major1		N	lajor2			
Conflicting Flow All	1238	1209	563	1195	1195	510	563	0	0	524	0	0	
Stage 1	685	685	-	510	510	-	-	-	-	-	-	-	
Stage 2	553	524	-	685	685	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	- 3	2.218	-	-	
Pot Cap-1 Maneuver	154	184	530	165	188	567	1019	-	-	1043	-	-	
Stage 1	441	451	-	550	541	-	-	-	-	-	-	-	
Stage 2	521	533	-	441	451	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 124	173	530	158	177	567	1019	-	-	1043	-	-	
Mov Cap-2 Maneuver	· 124	173	-	158	177	-	-	-	-	-	-	-	
Stage 1	441	425	-	550	541	-	-	-	-	-	-	-	
Stage 2	441	533	-	415	425	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	19.3	0	0.8	
HCM LOS	А	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR EB	Ln1V	/BLn1V	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	1019	-	-	-	158	567	1043	-	-	
HCM Lane V/C Ratio	-	-	-	-	0.242	0.154	0.058	-	-	
HCM Control Delay (s)	0	-	-	0	34.9	12.5	8.7	-	-	
HCM Lane LOS	А	-	-	А	D	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	-	0.9	0.5	0.2	-	-	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDN	VVDL		WDN	INDL		NDN	JDL	-	JDR	
Lane Configurations		4			4		<u> </u>	- î÷		<u> </u>	- î÷		
Traffic Vol, veh/h	13	0	9	3	0	4	7	372	4	4	285	6	
Future Vol, veh/h	13	0	9	3	0	4	7	372	4	4	285	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	0	11	0	
Mvmt Flow	14	0	9	3	0	4	7	388	4	4	297	6	

Major/Minor	Minor2		Ν	1inor1		ľ	Major1		Ν	lajor2			
Conflicting Flow All	714	714	300	717	715	390	303	0	0	392	0	0	
Stage 1	308	308	-	404	404	-	-	-	-	-	-	-	
Stage 2	406	406	-	313	311	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	349	359	744	347	359	663	1269	-	-	1178	-	-	
Stage 1	706	664	-	627	603	-	-	-	-	-	-	-	
Stage 2	626	601	-	702	662	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 344	356	744	340	356	663	1269	-	-	1178	-	-	
Mov Cap-2 Maneuver	· 344	356	-	340	356	-	-	-	-	-	-	-	
Stage 1	702	662	-	623	599	-	-	-	-	-	-	-	
Stage 2	619	597	-	691	660	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	13.6	12.8	0.1	0.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1269	-	-	441	471	1178	-	-
HCM Lane V/C Ratio	0.006	-	-	0.052	0.015	0.004	-	-
HCM Control Delay (s)	7.9	-	-	13.6	12.8	8.1	-	-
HCM Lane LOS	А	-	-	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0	0	-	-

3

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	f,			4		3	Þ		
Traffic Vol, veh/h	32	1	17	15	1	38	7	341	41	105	264	11	
Future Vol, veh/h	32	1	17	15	1	38	7	341	41	105	264	11	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	7	0	2	8	0	
Mvmt Flow	33	1	18	16	1	40	7	355	43	109	275	11	

Major/Minor	Minor2		Ν	1inor1		ľ	Major1		Μ	lajor2			
Conflicting Flow All	910	911	281	899	895	377	286	0	0	398	0	0	
Stage 1	499	499	-	391	391	-	-	-	-	-	-	-	
Stage 2	411	412	-	508	504	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	- 2	2.218	-	-	
Pot Cap-1 Maneuver	258	276	763	262	282	674	1288	-	-	1161	-	-	
Stage 1	557	547	-	637	611	-	-	-	-	-	-	-	
Stage 2	622	598	-	551	544	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	- 223	248	763	236	254	674	1288	-	-	1161	-	-	
Mov Cap-2 Maneuver	- 223	248	-	236	254	-	-	-	-	-	-	-	
Stage 1	553	496	-	633	607	-	-	-	-	-	-	-	
Stage 2	580	594	-	487	493	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	19.9	13.8	0.1	2.3	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1\	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	1288	-	-	294	236	647	1161	-	-
HCM Lane V/C Ratio	0.006	-	-	0.177	0.066	0.063	0.094	-	-
HCM Control Delay (s)	7.8	0	-	19.9	21.3	10.9	8.4	-	-
HCM Lane LOS	А	А	-	С	С	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	0.6	0.2	0.2	0.3	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4		3	ţ,		3	Þ	•=	
Traffic Vol, veh/h	9	0	14	4	0	5	6	507	15	5	556	23	
Future Vol, veh/h	9	0	14	4	0	5	6	507	15	5	556	23	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	40	-	-	130	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84	
Heavy Vehicles, %	0	0	0	0	0	0	0	4	0	0	2	0	
Mvmt Flow	11	0	17	5	0	6	7	604	18	6	662	27	

Major/Minor	Minor2		Ν	/linor1		Ν	1ajor1		N	lajor2			
Conflicting Flow All	1318	1324	676	1323	1328	613	689	0	0	622	0	0	
Stage 1	688	688	-	627	627	-	-	-	-	-	-	-	
Stage 2	630	636	-	696	701	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	136	157	457	135	157	496	915	-	-	969	-	-	
Stage 1	440	450	-	475	479	-	-	-	-	-	-	-	
Stage 2	473	475	-	435	444	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 133	155	457	129	155	496	915	-	-	969	-	-	
Mov Cap-2 Maneuver	· 133	155	-	129	155	-	-	-	-	-	-	-	
Stage 1	436	447	-	471	475	-	-	-	-	-	-	-	
Stage 2	464	471	-	417	441	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	22.4	22.3	0.1	0.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	915	-	-	234	219	969	-	-
HCM Lane V/C Ratio	0.008	-	-	0.117	0.049	0.006	-	-
HCM Control Delay (s)	9	-	-	22.4	22.3	8.7	-	-
HCM Lane LOS	А	-	-	С	С	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	0.4	0.2	0	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		7	ţ,			4		7	ţ,		
Traffic Vol, veh/h	23	1	9	36	1	82	18	470	27	57	539	34	
Future Vol, veh/h	23	1	9	36	1	82	18	470	27	57	539	34	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	115	-	-	-	-	-	205	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94	
Heavy Vehicles, %	0	0	0	0	0	0	0	1	0	2	4	0	
Mvmt Flow	24	1	10	38	1	87	19	500	29	61	573	36	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		N	lajor2			
Conflicting Flow All	1310	1280	591	1272	1284	515	609	0	0	529	0	0	
Stage 1	713	713	-	553	553	-	-	-	-	-	-	-	
Stage 2	597	567	-	719	731	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.12	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	- 3	2.218	-	-	
Pot Cap-1 Maneuver	137	167	511	146	166	564	979	-	-	1038	-	-	
Stage 1	426	438	-	521	518	-	-	-	-	-	-	-	
Stage 2	493	510	-	423	430	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	108	153	511	133	152	564	979	-	-	1038	-	-	
Mov Cap-2 Maneuver	108	153	-	133	152	-	-	-	-	-	-	-	
Stage 1	414	412	-	506	503	-	-	-	-	-	-	-	
Stage 2	404	496	-	390	405	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	39.4	21.9	0.3	0.8	
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1\	WBLn2	SBL	SBT	SBR
Capacity (veh/h)	979	-	-	139	133	546	1038	-	-
HCM Lane V/C Ratio	0.02	-	-	0.253	0.288	0.162	0.058	-	-
HCM Control Delay (s)	8.8	0	-	39.4	42.7	12.9	8.7	-	-
HCM Lane LOS	А	А	-	Е	Е	В	А	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0.9	1.1	0.6	0.2	-	-

Pine Springs at Village Green

SANDOW ENGINEERING

Summary of All Intervals

	4	0	0	4	-	A	
Run Number	1	2	3	4	5	Avg	
Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	994	962	959	913	958	958	
Vehs Exited	990	958	955	908	955	951	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	4	4	4	5	3	2	
Travel Distance (mi)	137	135	134	128	134	134	
Travel Time (hr)	5.2	4.9	5.0	4.6	5.0	4.9	
Total Delay (hr)	0.7	0.6	0.6	0.5	0.6	0.6	
Total Stops	157	111	118	103	139	125	
Fuel Used (gal)	5.6	5.3	5.4	5.0	5.3	5.3	

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, Gr	owth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	143	136	130	131	163	140	
Vehs Exited	140	131	126	129	156	137	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	3	5	4	2	7	4	
Travel Distance (mi)	20	19	18	18	22	19	
Travel Time (hr)	0.7	0.7	0.7	0.7	0.8	0.7	
Total Delay (hr)	0.1	0.1	0.1	0.1	0.1	0.1	
Total Stops	23	16	17	17	21	20	
Fuel Used (gal)	0.8	0.7	0.7	0.7	0.9	0.8	

Interval #1 Information Recording

Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted by	PHF, Growth Factors.	

Run Number	1	2	3	4	5	Avg	
Vehs Entered	237	211	226	210	231	224	
Vehs Exited	237	213	227	208	234	223	
Starting Vehs	3	5	4	2	7	4	
Ending Vehs	3	3	3	4	4	3	
Travel Distance (mi)	33	30	32	29	32	31	
Travel Time (hr)	1.3	1.1	1.2	1.0	1.2	1.2	
Total Delay (hr)	0.2	0.1	0.2	0.1	0.2	0.2	
Total Stops	37	20	23	23	38	27	
Fuel Used (gal)	1.4	1.1	1.3	1.1	1.3	1.2	

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumos adjusted by Grow	uth Eastars Anti DHE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	614	615	603	572	564	592	
Vehs Exited	613	614	602	571	565	592	
Starting Vehs	3	3	3	4	4	3	
Ending Vehs	4	4	4	5	3	2	
Travel Distance (mi)	84	86	84	81	79	83	
Travel Time (hr)	3.2	3.1	3.1	2.9	2.9	3.1	
Total Delay (hr)	0.4	0.4	0.4	0.3	0.4	0.4	
Total Stops	97	75	78	63	80	77	
Fuel Used (gal)	3.4	3.5	3.4	3.2	3.1	3.3	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	12	22	17	12
Average Queue (ft)	4	8	3	4
95th Queue (ft)	20	28	18	20
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	24	33	6	6
Average Queue (ft)	7	9	1	1
95th Queue (ft)	27	33	9	9
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	29	28	11
Average Queue (ft)	6	7	2	0
95th Queue (ft)	26	27	13	6
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	33	28	24
Average Queue (ft)	6	8	2	1
95th Queue (ft)	25	29	13	10
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	25	27	42
Average Queue (ft)	10	20	23
95th Queue (ft)	30	35	52
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	34	31	4	46
Average Queue (ft)	10	18	1	23
95th Queue (ft)	34	37	6	53
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	30	41	8	68
Average Queue (ft)	11	17	0	24
95th Queue (ft)	32	37	5	59
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	38	42	12	72
Average Queue (ft)	10	18	0	24
95th Queue (ft)	32	36	5	57
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 0 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Summary of All Intervals

Travel Distance (mi)

Travel Time (hr)

Total Delay (hr)

Fuel Used (gal)

Total Stops

Run Number	1	2	3	4	5	Avg	
Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	1433	1545	1467	1444	1538	1488	
Vehs Exited	1427	1542	1457	1437	1531	1479	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	6	3	10	7	7	6	

208

7.6

1.1

179

8.6

220

8.2

1.3

199

9.2

202

7.5

1.1

204

8.5

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, Gr	owth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	209	236	232	258	256	237	
Vehs Exited	204	232	222	251	247	232	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	5	4	10	7	9	7	
Travel Distance (mi)	29	33	31	35	35	33	
Travel Time (hr)	1.1	1.3	1.2	1.4	1.3	1.3	
Total Delay (hr)	0.2	0.3	0.2	0.2	0.2	0.2	
Total Stops	28	32	26	29	28	28	
Fuel Used (gal)	1.2	1.4	1.3	1.4	1.5	1.4	

210

7.8

1.2

195

8.8

216

8.1

1.3

214

9.1

205

7.6

1.1

179

8.4

Interval #1 Information Recording

Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted by I	PHF, Growth Factors.	

Run Number	1	2	3	4	5	Avg	
Vehs Entered	363	399	352	354	379	370	
Vehs Exited	364	398	356	356	381	372	
Starting Vehs	5	4	10	7	9	7	
Ending Vehs	4	5	6	5	7	3	
Travel Distance (mi)	51	57	49	50	54	52	
Travel Time (hr)	1.9	2.1	1.9	1.9	2.0	2.0	
Total Delay (hr)	0.3	0.4	0.3	0.3	0.3	0.3	
Total Stops	45	48	49	43	44	46	
Fuel Used (gal)	2.2	2.4	2.1	2.1	2.3	2.2	

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumes adjusted by Growth Easters	Anti DUE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	861	910	883	832	903	877	
Vehs Exited	859	912	879	830	903	877	
Starting Vehs	4	5	6	5	7	3	
Ending Vehs	6	3	10	7	7	6	
Travel Distance (mi)	122	130	127	119	127	125	
Travel Time (hr)	4.5	4.8	4.6	4.3	4.8	4.6	
Total Delay (hr)	0.6	0.7	0.6	0.6	0.7	0.6	
Total Stops	131	119	104	107	142	121	
Fuel Used (gal)	5.1	5.4	5.2	4.9	5.4	5.2	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	35	33	6
Average Queue (ft)	12	8	1
95th Queue (ft)	38	31	11
Link Distance (ft)	276	141	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			130
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	NB	SB	SB
Directions Served	LTR	LTR	L	L	TR
Maximum Queue (ft)	39	29	6	24	11
Average Queue (ft)	13	10	1	4	2
95th Queue (ft)	41	32	9	20	16
Link Distance (ft)	276	141			233
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			40	130	
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	29	6	30
Average Queue (ft)	9	9	0	2
95th Queue (ft)	32	31	5	15
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB	SB
Directions Served	LTR	LTR	L	L	TR
Maximum Queue (ft)	40	33	11	31	11
Average Queue (ft)	10	9	0	2	0
95th Queue (ft)	35	31	5	16	7
Link Distance (ft)	276	141			233
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			40	130	
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	46	30	28
Average Queue (ft)	23	24	19
95th Queue (ft)	55	41	40
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	38	42	42
Average Queue (ft)	22	26	19
95th Queue (ft)	43	43	46
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	42	51	36
Average Queue (ft)	18	26	15
95th Queue (ft)	39	46	39
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	51	54	46
Average Queue (ft)	20	26	17
95th Queue (ft)	43	44	40
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 0 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Summary of All Intervals

03/03/2022

Run Number	1	2	3	4	5	Avg	
Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	964	936	940	899	906	929	
Vehs Exited	957	926	939	892	900	922	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	7	10	1	7	6	5	
Travel Distance (mi)	136	130	132	126	128	130	
Travel Time (hr)	5.1	4.8	4.8	4.6	4.6	4.8	
Total Delay (hr)	0.7	0.5	0.6	0.5	0.5	0.6	
Total Stops	134	139	135	121	109	129	
Fuel Used (gal)	5.4	5.2	5.2	5.0	5.0	5.2	

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, O	Growth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	147	151	139	134	135	142	
Vehs Exited	144	147	131	130	131	137	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	3	4	8	4	4	5	
Travel Distance (mi)	20	21	19	19	18	20	
Travel Time (hr)	0.8	0.8	0.7	0.7	0.7	0.7	
Total Delay (hr)	0.1	0.1	0.1	0.1	0.1	0.1	
Total Stops	21	23	23	18	13	19	
Fuel Used (gal)	0.8	0.9	0.7	0.7	0.7	0.8	

Interval #1 Inf	formation Recording	
Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted b	y PHF, Growth Factors.	

Run Number 2 3 4 5 Avg 1 206 215 213 199 205 Vehs Entered 195 218 207 205 216 203 195 Vehs Exited Starting Vehs 3 8 5 4 4 4 Ending Vehs 4 1 5 0 4 1 Travel Distance (mi) 29 30 30 28 28 29 Travel Time (hr) 1.1 1.1 1.0 1.0 1.1 1.1 Total Delay (hr) 0.1 0.1 0.2 0.1 0.1 0.1 Total Stops 27 24 39 27 23 29 1.2 1.2 1.2 Fuel Used (gal) 1.1 1.1 1.2

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumes adjusted by Crowt	h Eastara Anti DUE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	611	570	588	566	576	582	
Vehs Exited	608	561	592	559	574	579	
Starting Vehs	4	1	5	0	4	1	
Ending Vehs	7	10	1	7	6	5	
Travel Distance (mi)	86	78	83	80	81	82	
Travel Time (hr)	3.3	2.9	3.0	2.9	2.9	3.0	
Total Delay (hr)	0.4	0.3	0.3	0.3	0.3	0.3	
Total Stops	86	92	73	76	73	81	
Fuel Used (gal)	3.4	3.2	3.2	3.2	3.2	3.2	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Maxamaant		
Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	30	28
Average Queue (ft)	12	7
95th Queue (ft)	36	26
Link Distance (ft)	276	141
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	NB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	24	29	11
Average Queue (ft)	5	6	2
95th Queue (ft)	24	26	13
Link Distance (ft)	276	141	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			40
Storage Blk Time (%)			0
Queuing Penalty (veh)			0

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	29	11	18
Average Queue (ft)	8	8	1	1
95th Queue (ft)	30	30	7	9
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	29	23	18
Average Queue (ft)	8	8	1	1
95th Queue (ft)	30	28	8	7
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	29	22	37
Average Queue (ft)	13	14	23
95th Queue (ft)	38	31	46
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	26	22	12	52
Average Queue (ft)	11	17	2	23
95th Queue (ft)	31	32	11	51
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	34	30	9	61
Average Queue (ft)	10	14	0	23
95th Queue (ft)	31	33	7	56
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	42	30	16	65
Average Queue (ft)	10	14	1	23
95th Queue (ft)	32	33	8	53
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 0 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Summary of All Intervals

Travel Distance (mi)

Travel Time (hr)

Total Delay (hr)

Fuel Used (gal)

Total Stops

Run Number	1	2	3	4	5	Avg	
Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	1453	1464	1482	1529	1474	1478	
Vehs Exited	1447	1454	1478	1522	1469	1474	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	6	10	4	7	5	6	

210

7.8

1.2

192

8.8

208

7.7

1.2

191

8.8

207

7.6

1.1

189

8.6

217

8.2

1.3

206

9.0

208

7.8

1.2

219

8.6

210

7.8

1.2

198

8.8

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, G	Growth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	232	243	228	246	217	230	
Vehs Exited	225	240	219	241	207	227	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	7	3	9	5	10	6	
Travel Distance (mi)	33	34	32	35	30	33	
Travel Time (hr)	1.2	1.3	1.1	1.3	1.1	1.2	
Total Delay (hr)	0.2	0.2	0.2	0.2	0.1	0.2	
Total Stops	27	33	26	27	27	26	
Fuel Used (gal)	1.3	1.4	1.3	1.4	1.2	1.3	

Interval #1 Information Recording

Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted by I	PHF, Growth Factors.	

Run Number	1	2	3	4	5	Avg	
Vehs Entered	361	341	402	365	385	372	
Vehs Exited	360	340	405	363	392	372	
Starting Vehs	7	3	9	5	10	6	
Ending Vehs	8	4	6	7	3	6	
Travel Distance (mi)	50	48	57	51	55	52	
Travel Time (hr)	1.8	1.7	2.2	1.9	2.1	2.0	
Total Delay (hr)	0.3	0.3	0.4	0.3	0.4	0.3	
Total Stops	42	39	53	46	57	47	
Fuel Used (gal)	2.1	2.0	2.5	2.2	2.4	2.2	

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumos adjusted by Growt	h Eastars Anti DHE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	860	880	852	918	872	877	
Vehs Exited	862	874	854	918	870	876	
Starting Vehs	8	4	6	7	3	6	
Ending Vehs	6	10	4	7	5	6	
Travel Distance (mi)	123	126	121	132	124	125	
Travel Time (hr)	4.6	4.7	4.4	4.9	4.6	4.6	
Total Delay (hr)	0.7	0.7	0.6	0.8	0.7	0.7	
Total Stops	120	119	113	133	135	124	
Fuel Used (gal)	5.1	5.3	5.0	5.4	5.1	5.2	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Movement	EB	WB
Directions Served	LTR	LTR
Maximum Queue (ft)	34	29
Average Queue (ft)	15	14
95th Queue (ft)	41	36
Link Distance (ft)	276	141
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	SB	SB
Directions Served	LTR	LTR	L	TR
Maximum Queue (ft)	34	32	30	9
Average Queue (ft)	14	11	3	1
95th Queue (ft)	41	33	19	14
Link Distance (ft)	276	141		233
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			130	
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	35	29	12	24
Average Queue (ft)	8	8	0	1
95th Queue (ft)	31	30	5	10
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB	SB
				50	
Directions Served	LTR	LTR	L	L	TR
Maximum Queue (ft)	39	33	12	30	9
Average Queue (ft)	11	10	0	1	0
95th Queue (ft)	35	32	4	12	6
Link Distance (ft)	276	141			233
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			40	130	
Storage Blk Time (%)			0		
Queuing Penalty (veh)			0		

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	41	45	32
Average Queue (ft)	19	25	18
95th Queue (ft)	47	49	42
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	WB	WB	SB
Directions Served	L	TR	L
Maximum Queue (ft)	42	50	32
Average Queue (ft)	21	26	16
95th Queue (ft)	46	47	40
Link Distance (ft)		177	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	115		205
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	55	50	4	51
Average Queue (ft)	22	24	0	16
95th Queue (ft)	46	41	3	43
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	WB	WB	NB	SB
Directions Served	L	TR	LTR	L
Maximum Queue (ft)	55	58	4	51
Average Queue (ft)	21	25	0	16
95th Queue (ft)	46	44	2	42
Link Distance (ft)		177	233	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	115			205
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 0 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Summary of All Intervals

Run Number	1	2	3	4	5	Avg	
Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	1029	1063	1065	1076	1090	1064	
Vehs Exited	1025	1059	1063	1069	1086	1060	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	4	4	2	7	4	2	
Travel Distance (mi)	140	145	147	146	149	145	
Travel Time (hr)	5.5	5.6	5.8	5.8	5.8	5.7	
Total Delay (hr)	0.8	0.8	0.9	0.9	0.9	0.9	
Total Stops	197	200	217	216	204	205	
Fuel Used (gal)	5.8	6.1	6.1	6.1	6.2	6.1	

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, Gr	owth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	157	170	156	143	153	156	
Vehs Exited	154	160	153	140	146	151	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	3	10	3	3	7	4	
Travel Distance (mi)	21	22	21	19	21	21	
Travel Time (hr)	0.8	0.9	0.9	0.8	0.8	0.8	
Total Delay (hr)	0.1	0.2	0.1	0.1	0.1	0.1	
Total Stops	28	36	37	22	29	29	
Fuel Used (gal)	0.9	1.0	0.9	0.8	0.9	0.9	

Interval #1 Information Recording

Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted by F	PHF, Growth Factors.	

Run Number	1	2	3	4	5	Avg	
Vehs Entered	226	215	237	220	245	229	
Vehs Exited	224	223	237	215	243	228	
Starting Vehs	3	10	3	3	7	4	
Ending Vehs	5	2	3	8	9	5	
Travel Distance (mi)	31	31	33	30	33	31	
Travel Time (hr)	1.2	1.2	1.3	1.2	1.3	1.2	
Total Delay (hr)	0.2	0.2	0.2	0.2	0.2	0.2	
Total Stops	44	37	45	42	49	43	
Fuel Used (gal)	1.2	1.3	1.4	1.2	1.4	1.3	

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumos adjusted by Crowth	Eastara Anti DUE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	646	678	672	713	692	679	
Vehs Exited	647	676	673	714	697	681	
Starting Vehs	5	2	3	8	9	5	
Ending Vehs	4	4	2	7	4	2	
Travel Distance (mi)	88	92	93	96	95	93	
Travel Time (hr)	3.4	3.6	3.6	3.8	3.7	3.6	
Total Delay (hr)	0.5	0.5	0.5	0.6	0.6	0.5	
Total Stops	125	127	135	152	126	133	
Fuel Used (gal)	3.7	3.9	3.8	4.1	3.9	3.9	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	30	11	6
Average Queue (ft)	13	2	1
95th Queue (ft)	38	15	11
Link Distance (ft)	276	141	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			130
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	NB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	28	11
Average Queue (ft)	15	6	2
95th Queue (ft)	40	24	12
Link Distance (ft)	276	141	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			40
Storage Blk Time (%)			0
Queuing Penalty (veh)			0

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	41	29	23	18
Average Queue (ft)	16	6	2	1
95th Queue (ft)	42	24	13	10
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	41	29	23	18
Average Queue (ft)	16	5	2	1
95th Queue (ft)	41	23	12	9
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	L
Maximum Queue (ft)	40	30	22	20	69
Average Queue (ft)	27	14	14	4	31
95th Queue (ft)	47	37	32	27	79
Link Distance (ft)	99		177	233	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		115			205
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	L
Maximum Queue (ft)	47	25	31	6	44
Average Queue (ft)	24	11	16	1	22
95th Queue (ft)	49	31	38	8	47
Link Distance (ft)	99		177	233	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		115			205
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	L
Maximum Queue (ft)	53	37	37	22	56
Average Queue (ft)	25	11	18	1	25
95th Queue (ft)	50	33	36	11	53
Link Distance (ft)	99		177	233	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		115			205
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	L
Maximum Queue (ft)	54	38	41	31	77
Average Queue (ft)	25	11	17	2	25
95th Queue (ft)	50	33	36	14	56
Link Distance (ft)	99		177	233	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		115			205
Storage Blk Time (%)					
Queuing Penalty (veh)					

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 0 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Summary of All Intervals

Run Number

Start Time	7:00	7:00	7:00	7:00	7:00	7:00	
End Time	8:10	8:10	8:10	8:10	8:10	8:10	
Total Time (min)	70	70	70	70	70	70	
Time Recorded (min)	70	70	70	70	70	70	
# of Intervals	3	3	3	3	3	3	
# of Recorded Intervals	3	3	3	3	3	3	
Vehs Entered	1666	1672	1647	1692	1672	1670	
Vehs Exited	1658	1664	1647	1683	1666	1664	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	8	8	0	9	6	5	
Travel Distance (mi)	230	231	228	232	231	230	
Travel Time (hr)	9.4	9.4	9.0	9.5	9.3	9.3	
Total Delay (hr)	1.9	1.9	1.7	2.0	1.8	1.9	
Total Stops	278	285	252	296	277	276	
Fuel Used (gal)	10.1	10.1	9.8	10.1	10.0	10.0	

Interval #0 Information Seeding

Start Time	7:00
End Time	7:10
Total Time (min)	10
Volumes adjusted by PHF, Gro	wth Factors.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	264	249	271	266	283	266	
Vehs Exited	258	242	265	261	270	261	
Starting Vehs	0	0	0	0	0	0	
Ending Vehs	6	7	6	5	13	7	
Travel Distance (mi)	36	34	37	36	38	36	
Travel Time (hr)	1.6	1.3	1.5	1.5	1.6	1.5	
Total Delay (hr)	0.5	0.2	0.3	0.3	0.4	0.3	
Total Stops	53	43	32	42	46	42	
Fuel Used (gal)	1.6	1.5	1.6	1.6	1.7	1.6	

Interval #1 Information Recording

Start Time	7:10	
End Time	7:25	
Total Time (min)	15	
Volumes adjusted by F	PHF, Growth Factors.	

3

4

409

5

417

Avg

407

Run Number 2 1 Vehs Entered 414 412 377

Vehs Exited	408	402	374	408	419	403	
Starting Vehs	6	7	6	5	13	7	
Ending Vehs	12	17	9	6	11	8	
Travel Distance (mi)	58	56	51	56	56	55	
Travel Time (hr)	2.3	2.3	2.0	2.4	2.3	2.3	
Total Delay (hr)	0.5	0.5	0.4	0.6	0.5	0.5	
Total Stops	50	67	59	74	69	63	
Fuel Used (gal)	2.5	2.5	2.2	2.5	2.5	2.4	

Interval #2 Information Recording 2

Start Time	7:25
End Time	8:10
Total Time (min)	45
Volumes adjusted by Growth	Eactors Anti DHE

Volumes adjusted by Growth Factors, Anti PHF.

Run Number	1	2	3	4	5	Avg	
Vehs Entered	988	1011	999	1017	972	997	
Vehs Exited	992	1020	1008	1014	977	1002	
Starting Vehs	12	17	9	6	11	8	
Ending Vehs	8	8	0	9	6	5	
Travel Distance (mi)	136	141	139	140	137	139	
Travel Time (hr)	5.5	5.8	5.5	5.6	5.4	5.6	
Total Delay (hr)	1.0	1.2	1.0	1.1	1.0	1.1	
Total Stops	175	175	161	180	162	169	
Fuel Used (gal)	6.0	6.1	6.0	6.0	5.8	6.0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #0

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	40	28	6	12
Average Queue (ft)	21	9	2	4
95th Queue (ft)	51	30	14	20
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #1

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	40	29	12	18
Average Queue (ft)	26	8	3	3
95th Queue (ft)	51	29	18	19
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			1	

Intersection: 1: Row River/Row River & RV Access/Gas Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	48	38	28	24
Average Queue (ft)	18	8	3	2
95th Queue (ft)	45	31	18	15
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 1: Row River/Row River & RV Access/Gas Access, All Intervals

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	53	38	28	30
Average Queue (ft)	20	8	3	3
95th Queue (ft)	47	31	18	17
Link Distance (ft)	276	141		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			40	130
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #0

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	L	TR	LTR	L
Maximum Queue (ft)	33	37	45	67	32
Average Queue (ft)	22	19	28	26	15
95th Queue (ft)	47	43	48	93	40
Link Distance (ft)	99		177	233	
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		115			205
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #1

Movement	EB	WB	WB	NB	SB	SB
Directions Served	LTR	L	TR	LTR	L	TR
Maximum Queue (ft)	46	42	44	46	41	6
Average Queue (ft)	19	21	28	10	20	0
95th Queue (ft)	45	47	44	44	51	0
Link Distance (ft)	99		177	233		169
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		115			205	
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 11: Row River /Row River Rd & Jim Wright Way, Interval #2

				ND	00	0.0
Movement	EB	WB	WB	NB	SB	SB
Directions Served	LTR	L	TR	LTR	L	TR
Maximum Queue (ft)	54	45	56	103	56	4
Average Queue (ft)	19	18	27	14	22	0
95th Queue (ft)	45	40	47	59	49	3
Link Distance (ft)	99		177	233		169
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		115			205	
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 11: Row River /Row River Rd & Jim Wright Way, All Intervals

Movement	EB	WB	WB	NB	SB	SB
Directions Served	LTR	L	TR	LTR	L	TR
Maximum Queue (ft)	56	46	59	120	59	10
Average Queue (ft)	20	19	27	15	20	0
95th Queue (ft)	46	42	47	63	48	3
Link Distance (ft)	99		177	233		169
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		115			205	
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty, Interval #0: 0 Network wide Queuing Penalty, Interval #1: 1 Network wide Queuing Penalty, Interval #2: 0 Network wide Queuing Penalty, All Intervals: 0

Pine Springs at Village Green

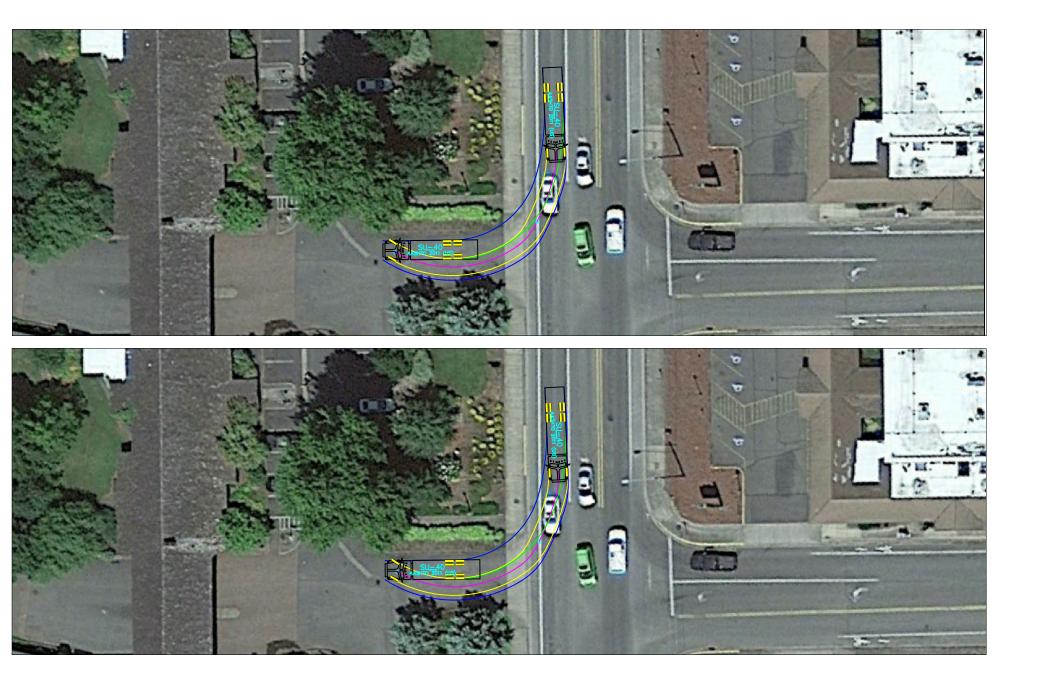
SANDOW ENGINEERING

Major Street:	
Minor Street:	8
	Pine Springs at Village Green
City/County:	
Analysis Year:	
Alternative:	1
Meet 70% Warrants?:	
	100%
Major	
Approach Lanes:	1
Minor	
Approach Lanes:	1
Mata	
Major Annua ak Valanas (ank)	1145
Approach Volumes (vph):	1145
Minor	
Approach Volume (vph):	119
Right Turn Volume (vph):	80
Capacity of Shared/Exclusive Right Turn Lane ¹ :	546
Right Turn Discount:	464
Right Turn Volume included in Warrant:	0
Minor Approach Volume in Warrant:	39
Major Approach K factor:	10
Minor Approach K factor:	10

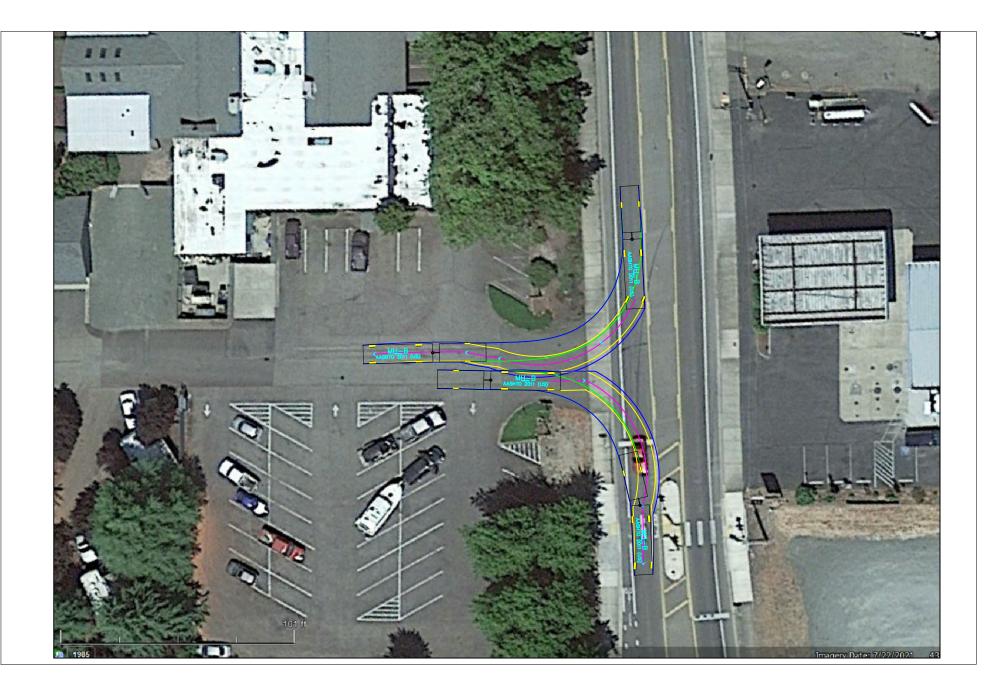
¹ Capacity obtained from unsignalized intersection analysis For guidance on preliminary signal warrant analysis, refer to the Analysis Procedures Manual.

Last Updated: January 2018

Oregon Department of Transportation									
	Transportation Development Branch								
Transportation Planning Analysis Unit									
Preliminary Traffic Signal Warrant Analysis ¹									
Major Street: Row RiverMinor Street: Jim WrightProject:Pine Springs at Village GreenCity/County: Cottage Grove									
Project:		village Green			aant				
Year: 2024 Alternative: With Development Preliminary Signal Warrant Volumes									
Nerve				T					
	ber of		najor street		r street, highest				
Approa	ch lanes	11	ning from	11	aching				
Maior	both directionsvolumeMinorPercent of standard warrantsPercent of standard warrants								
Major Street	Minor Percent of stan Street 100		70	100	70				
Sueer			Vehicular T		/0				
1		-	-		1950				
1		8850	6200	2650	1850				
2 or more	1	10600	7400	2650	1850				
2 or more	2 or more 2 or more	10600 8850	7400 6200	3550 3550	2500 2500				
1					2300				
1		-	of Continuo	-	0.50				
1	1	13300	9300	1350	950				
2 or more	1	15900	11100	1350	950				
2 or more	2 or more	15900	11100	1750	1250				
1	2 or more	13300	9300	1750	1250				
Х		standard warran							
70 percent of standard warrants ²									
	Preliminary Signal Warrant Calculation								
	Street	Number of	Warrant	Approach	Warrant Met				
		Lanes	Volumes	Volumes					
Case	Major	1	8850	11450	Ν				
A	Minor	1	2650	390					
Case	Major	1	13300	11450	N				
B	Minor 1 1350 390 IN								
Analyst and Da	ate:		Reviewer and I	Date:					


¹ Meeting preliminary signal warrants does **not** guarantee that a signal will be installed. When preliminary signal warrants are met, project analysts need to coordinate with Region Traffic to initiate the traffic signal engineering investigation as outlined in the Traffic Manual. Before a signal can be installed, the engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward signal recommendations to headquarters. Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway.

 2 Used due to 85th percentile speed in excess of 40 mph or isolated community with population of less than 10,000.


Analysis Procedures Manual

Pine Springs at Village Green

SANDOW ENGINEERING

SU-40 Turning Movements at the North Access

RV with Boat Turning Movements at the South Access

SANDOW ENGINEERING

160 Madison Street, Suite A Eugene, Oregon 97402 541.513.3376 sandowengineering.com

EXHIBIT F

380 Q Street, Ste 200 Springfield, Oregon 97477 (541) 302-9790 baileywilliams@ao-engr.com

A & O Engineering LLC

Stormwater Report

То:	City of Cottage Grove
Prepared By:	Bailey Williams, EIT
Reviewed By:	Kyle Morris, PE
Date:	2/21/2023
Taxmap & T.L.:	20-03-27-20 T.L.s 03701 & 03702
Re:	Storm Drainage Design for Pine Sp

Storm Drainage Design for Pine Springs at Village Green, Cottage Grove, ${\rm OR-Lot}\,3$ of the Village Green Subdivision

Project Overview

The proposed 7.92-acre development includes 15 multi-family residential apartment buildings, an office, and parking lots. Roof drainage and runoff from impervious surfaces is proposed to be collected by catch basins and storm piping and routed to four water quality detention facilities located around the area of the property. Stormwater facilities are designed to infiltrate up to the 2-year storm event with an emergency overflow pipe for larger events. Emergency overflow piping is proposed to discharge into the existing public 60" storm pipe east of the property in Row River Road right-of-way.

Site Soils

Branch Engineering performed four encased falling head infiltration tests at the site on February 17th, 2022. The measured infiltration rates from the four tests ranged from 8 inches per hour to 66 inches per hour depending on the test location. A safety factor of 2 will be applied to the lowest rate for purposes of design. Therefore, the design infiltration rate for native soils is assumed to be 4 inches per hour. A well log from a nearby site was reviewed and lists static water at 8-feet BGS. The full geotechnical report prepared by Branch Engineering is attached in the appendix.

The current hotel development on the subject property is served by catch basins and private piping that discharge into the existing 60" storm main in the Row River Road right-of-way. To show the proposed development meets detention requirements, the below existing peak flowrates leaving the current hotel development are summarized in the table below:

Table 1: Existing Conditions Variables.

Basin Area	Description	Area [sf]	CN	Tc [mins]
Existing Buildings	Impervious Roof & Adjacent Sidewalk	44,242	98	5.0
Existing Impervious Area	Impervious Pavement & Adjacent Sidewalk	68,924	98	5.0
Existing Landscape Area	Woods/Grass Comb., Fair, HSG B	82,633	65	60.0

Stormwater Calculation Parameters

HydroCAD software was utilized to perform hydraulic and hydrology calculations with the below parameters, taken from the 2014 Eugene Stormwater Management Manual as required by the City of Cottage Grove:

Duration:	24 Hours
On-Site Design Storm:	Destination Storm
Pollution Reduction Precipitation:	1.40"
Destination Precipitation:	3.60"
25-Year Precipitation:	5.18"
Storm Distribution Table:	1A – 24-hour (NRCS SCS Rainfall Distributions)
Manning's "n" Value:	0.010 for PVC Pipe (COE PIDS Manual)
Runoff Method:	Santa Barbara Urban Hydrograph Method (SBUH)
Time of Concentration:	10 Minutes

Storm Design

The storm management facilities are designed to process drainage from apartment roofs, the office roof and the parking lot and drive aisles serving the new Pine Springs development. All storm management facilities are designed to fully infiltrate up to the 2-year design storm. The primary outlet is infiltration with an assumed infiltration rate of 2.0 in/hr for imported soils, and 4.0 in/hr for native soils. All storm management facilities have an overflow control grate with an outflow pipe into the proposed storm system that eventually discharges into an existing 60" storm main east of the property in the Row River Road right-of-way.

Stormwater runoff is proposed to be collected by catch basins and stormwater roof drain pipes. Impervious areas are summarized in the table below:

Surface Description	Impervious Area [sf]	CN
Rooftop Runoff (Bldgs. 1-16)	86,163	98
Paved Surfaces	115,768	98
Pond #1	4,554	98

Table 2: Impervious Surface Summary.

Pond #2	2,830	98
Pond #3	4,349	98
Pond #4	1,585	98

All ponds will have a 12" growing medium and 12" rock chamber layer beneath the open storage areas. The final pond design will be completed at the time of building permits for the Pine Springs development where the storm report can be revised. Below is a table summarizing the physical characteristics of the proposed ponds:

Pond #	Layer	Top Elev. [ft]	Bottom Elev. [ft]	Side Slopes [H:V]	Top Area [sf]	Bottom Area [sf]
	Open Storage	637.00	632.00	4:1	4,554	518
1	Growing Medium	632.00	631.00	n/a	518	518
	Rock Chamber	631.00	630.00	n/a	518	518
	Open Storage	637.00	633.00	4:1	2,830	202
2	Growing Medium	633.00	632.00	n/a	202	202
	Rock Chamber	632.00	631.00	n/a	202	202
	Open Storage	636.50	632.50	4:1	4,349	568
3	Growing Medium	632.50	631.50	n/a	568	568
	Rock Chamber	631.50	630.50	n/a	568	568
	Open Storage	638.00	636.00	4:1	1,585	537
4	Growing Medium	636.00	635.00	n/a	537	537
	Rock Chamber	635.00	634.00	n/a	537	537

Table 3: Pond Physical Characteristics.

Hydraulic Calculations

HydroCAD software was utilized to perform all hydraulic calculations. To meet the detention requirements, the existing conditions on the proposed development site were analyzed using the input values discussed above in this report. Below is a table comparing the pre-construction and post-construction peak flowrates leaving the site. As shown, detention requirements are met, the full HydroCAD report is attached at the end with more details of the analysis.

Table 4: Pre-Construction and Post-Construction Peak Flowrates.

Storm Event	Pre-Construction Peak Flow [cfs]	Post-Construction Peak Flow [cfs]
Destination	2.23	0.50
25-Year	3.40	2.28

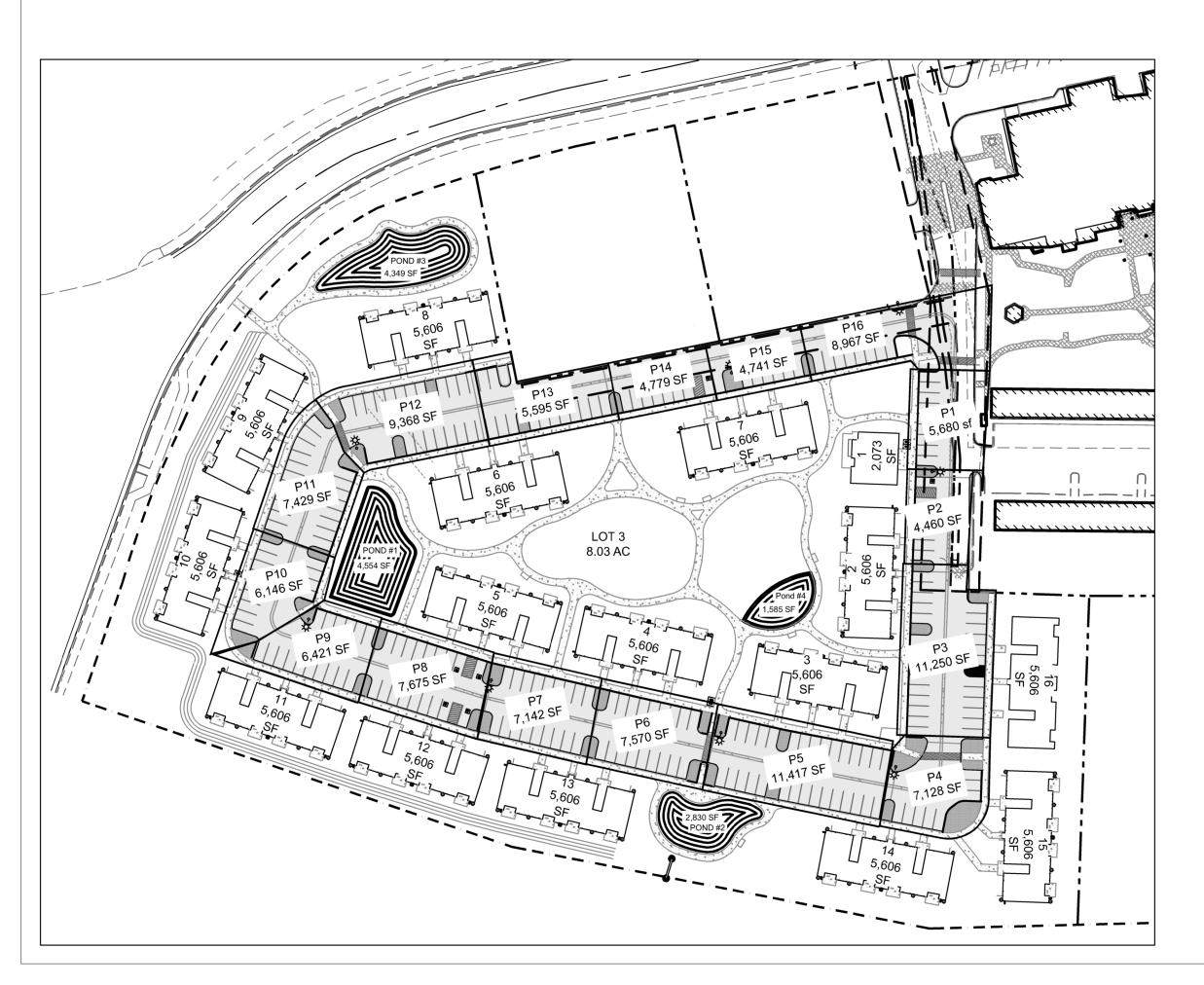
Each pond will have an overflow structure with all ponds on-site being connected hydraulically via piping. Only pond #3 is proposed to have an overflow discharge into the public system, allowing for maximum infiltration to take place prior to discharge. Below is a summary of the outflow structures of each pond:

Table 5: Pond Outlet Summary.

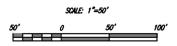
Pond #	Outlet Type	Elevation [ft]	Angle [deg]
	Exfiltration	630.00	0
1	12" Pipe (routed to internal storm system, pond #3)	633.60	0
1	6" Orifice	634.10	90
	Overflow Grate	636.50	18
	Exfiltration	631.00	0
2	12" Pipe (routed to internal storm system, pond #1)	633.60	0
	Overflow Grate	636.50	18
	Exfiltration	630.50	0
3	10" Pipe (Routed to Row River Rd, existing storm main)	633.92	0
	Overflow Grate	635.50	18
	Exfiltration	634.00	0
4	8" Pipe (routed to internal storm system, pond #1)	636.00	0
	Overflow Grate	637.00	18

As part of the hydraulic analysis, peak hydraulic grade lines of each pond were analyzed to ensure the safety of the structures and residents. Shown in the table below, all ponds contain the 25-year storm event and thus do not endanger surrounding infrastructure. Below are the analysis results of the storm events outlined in the previous section:

Pond #	FL [IN] Elevation [ft]	FL [OUT] Elevation [ft]	Flood Elevation [ft]	Pollution Reduction HGL [ft]	Destination HGL [ft]	25-Year HGL [ft]
1	632.00	633.60	637.00	634.08	635.83	636.72
2	633.00	633.60	637.00	634.94	636.60	636.78
3	632.50	633.92	636.50	633.29	635.65	635.86
4	636.00	636.00	638.00	635.01	636.73	637.07


Table 6: Pond Hydraulic Grade Lines.

Conclusion

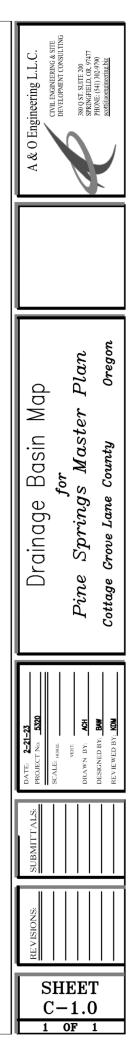

For the storm events analyzed, the storm management facilities are adequately sized to fully treat the pollution reduction storm and infiltrate up to the destination storm. For the destination event and larger there is an overflow system that will route runoff into the public stormwater system in Row River Road for an emergency escape route. Therefore, the proposed system will operate safely while meeting City of Cottage Grove requirements for detention and water quality treatment.

Attachments

- Pine Springs Basin Map
- Geotech Report Prepared by Branch Engineering, Inc. on April 21st, 2022
- Pine Springs at Village Green HydroCAD Report

LEGEND

BOUNDARY LINE ADJACENT LOT LINE EXISTING 1' CONTOUR LINE EXISTING CURB & GUTTER PROPOSED CURB PROPOSED CATCH BASIN



PROPOSED SIDEWALK AREA

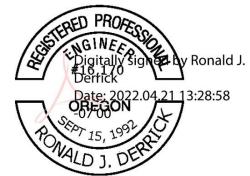
PROPOSED PAVED AREA

PROPOSED CROSSWALK AREA

PROPOSED LANDSCAPE BED

April 21, 2022

Mr. Colin Kelly Timberview Construction PO Box 20025 Keizer, Oregon 97307


RE: GEOTECHNICAL ENGINEERING INVESTIGATION PINE SPRINGS AT THE VILLAGE GREEN APARTMENTS 725 ROW RIVER ROAD COTTAGE GROVE, OREGON BRANCH ENGINEERING INC. PROJECT NO. 21-753

Pursuant to your authorization, Branch Engineering Inc. (BEI) performed a geotechnical engineering investigation at the subject site for the proposed development of a multi-family residential housing development.

The accompanying report presents the results of our site research, field exploration and testing, data analyses, as well as our conclusions and recommended geotechnical design parameters for the project. Based on the results of our study, no geotechnical/geologic hazards were identified at the site that would prohibit the proposed residential subdivision. The site is suitable for the planned development and based on a geotechnical/geological perspective, will not adversely impact adjacent properties, provided that the recommendations of this report are implemented in the design and construction of the project.

Sincerely, Branch Engineering Inc.

> Ronald J. Derrick

EXPIRES: 12/31/2023

Ronald J. Derrick P.E., G.E. Principal Geotechnical Engineer

Samuel Rabe

Sam Rabe EIT Engineering Technician

EUGENE-SPRINGFIELD

TABLE OF CONTENTS

1.0	INTRO	DUCTION	3	
1.1	Purpose and Scope of Work			
1.2	Project Location and Description			
1.3	Site Information Resources			
2.0	SITE SU	BSURFACE CONDITIONS	4	
2.1	Subsurfa	ce Soils	4	
2.2	Groundw	ater	5	
<u>3.0</u>	GEOLO	GIC SETTING	5	
3.1	Regional	Geology	5	
3.2	Site Geol	ogy	6	
<u>4.0</u>	CONCL	<u>USIONS</u>	6	
<u>5.0</u>	RECOM	MENDATIONS	6	
5.1	Site Prep	paration and Foundation Subgrade Requirements	6	
5.2	Geotech	nical Construction Site Observations	8	
5.3	Engineer	red Fill Recommendations	9	
5.4	Excavati	ons	10	
5.5	Drainage	e and Infiltration	10	
5.6	Soil Bear	ring Capacity and Settlement	10	
5.7	Slabs-or	1-Grade	11	
5.8	Soil Shri	nk/Swell Potential	11	
5.9	Friction	Coefficient and Earth Pressures	11	
5.10	Wet Wea	ther/Dry Weather Construction Practices	11	
5.11	Pavemer	nt Design Recommendations	11	
5.12	Seismic	Site Classification and Hazards	12	
<u>6.0</u>	LIMITA	TIONS	13	
FIGU	RE 1	Site Exploration Map		
FIGURE 2 Site Gr		Site Gradient Visual		
FIGU APPE	re 3 Endix a -	Site Geology Map USCS Soil Key, Test Pit Logs, Infiltration Testing, OWRD Well Log, NRCS Soil S	Survey	
		Information		

1.0 INTRODUCTION

1.1 Purpose and Scope of Work

The purpose of this work is to establish and present geotechnical engineering criteria and requirements related to the site and subsurface conditions that may influence the design and construction of the proposed project. Our field investigation scope of work consisted of a site reconnaissance with subsurface investigation and infiltration testing on February 17, 2022.

The subsurface investigation utilized a mini excavator, equipped with a 2-foot-wide toothed bucket to advance seven exploratory test pits to a maximum depth of 7.5-feet below ground surface (BGS). To provide site specific infiltration rates, four locations where test pits where excavated were used for infiltration testing. See the attached Figure-1, Site Exploration Map, for exploratory test pit locations.

Our scope of work also included pertinent site research activities, engineering data review, analysis, and preparation of this report.

1.2 **Project Location and Description**

The approximately 8-acre subject site is located at coordinates of 43.800129°, North Latitude, and 123.046754° West Longitude in Cottage Grove, Oregon. The rectangularly shaped site is bordered by Interstate-5 on the west, Row River Road on the north and east, and by portions of the Village Green Hotel and open areas to the south.

At the time of this report the site is occupied by the Village Green Hotel and associated pool/hot tub/open spaces, parking and accessways, and garden spaces. The buildings on the northern side of the site had been stripped down and appeared to be in the process of being demolished, the rest of the site is either parking lots and accessways, or open space with gardens. Numerous mature trees are located within the planned development area. Site topography is relatively flat throughout the majority of the site, the exception being a shallow bowl-shaped depression located north of the pool area.

Based on a preliminary drawing provided to BEI geotechnical staff, sixteen multi-family structures are proposed for the site along with open spaces, paved driveways and parking areas. Access to the site is expected to be taken from a driveway on Row River Road. Specific structural loads were not provided; however, two- to three-story wood-framed apartment buildings typically do not exceed 15-kip column loads or two kip/ft line loads on foundations.

1.3 Site Information Resources

The following site investigation activities were performed and literature resources were reviewed for pertinent site information:

- Department of Geologic and Mining Industries (DOGAMI) Online Geologic Map of Oregon.
- USGS OM-110 Geology of the Southern and Southwestern Border Area of the Willamette Valley, Oregon. 1951. By H.E. Vokes, D.A. Myers, and Parke Detweiler Snavely Jr.

- Seven exploratory test pits advanced to a maximum depth of 7.5-feet BGS on February 17, 2021 at the approximate locations shown on the attached Figure-1 Site Exploration Map.
- Four encased falling head infiltration tests performed on February 17, 2022, at the approximate locations shown on Figure-1, Site Exploration Map. See Appendix A for infiltration data sheet.
- Review of the Web Soil Survey of Lane County Area, United States Department of Agricultural (USDA) Natural Resources Conservation Service (NRCS) (attached in Appendix A).
- Oregon Department of Geology and Mineral Industries (DOGAMI) web hazard viewer (HazVu) and Statewide Landslide Information Layer for Oregon (SLIDO).
- Review of available nearby Oregon Department of Water Resources Well Logs (attached in Appendix A).
- Cottage Grove, Oregon, Quadrangle United States Geologic Survey Topographic Map, 2020.
- Oregon Structural Specialty Code 2019 (OSSC 2019), applicable building code criteria.
- Geology of Oregon, sixth edition by Orr, Orr and Baldwin, 2012.

2.0 SITE SUBSURFACE CONDITIONS

The analyses, conclusions, and recommendations contained in this report are based on site conditions as they existed on February 17, 2021 and assume that our exploratory test pit findings presented in Appendix A are representative of the subsurface conditions throughout the site. If during construction subsurface conditions differ from those encountered in the exploratory test pits; BEI requests that we be informed to review the site conditions and adjust our recommendations, if necessary.

2.1 Subsurface Soils

Visual classification of the near surface soils was performed in accordance with the American Society of Testing and Materials (ASTM) Method D-2488 and the Unified Soil Classification System (USCS). Soil samples were collected from test pit sidewalls in the top 5-feet of excavations. Soil samples were taken at depths where noticeable changes in consistency, color, and moisture content were apparent. Subsurface soil conditions were found to be relatively consistent throughout the site, generally consisted of the following.

- Topsoil: Soft, Moist, Dark Brown Clay with Trace Silt and Organics extends to a maximum depth of approximately 30-inches BGS.
- Isolated areas of near-surface silty gravel fill (Fill); IT-2 and IT-3 extending to 2-feet BGS.
- Underlying the near-surface topsoil or fill; brown, moist alluvial Clay (CL); medium-stiff, increasing to stiff in consistency with depth. In the southwest corner of the site, brown, wet, soft, high plasticity Clay (CH) was encountered to 48-inches BGS in Test Pit TP-1.
- Dense alluvial gravel deposits (GP); with sand and minor silt, wet. Depth to gravel ranged from 3-feet to 5-feet deep from ground surface. Depth to the gravel deposits varied.

The NRCS Web Soil Survey mapping unit was used to identify soils at the project site and is summarized below:

Unit Name	Description
McBee Silty Clay Loam	Moderately well drained silty clay and silt loam deposits derived
MCBEE SIRty Clay Loan	from recent mixed alluvium. Mapped in central area.
Salem-Urban land Well drained deposits of gravelly clay, sand, and silt derive	
complex	gravelly mixed alluvium. Mapped in Hotel Area
	Well drained deposits of gravelly silt loam that grade to very
Salem gravelly silt loam	gravelly sand derived from a parent material of gravelly mixed
	alluvium. Mapped across the majority of the site.

The above soil descriptions are consistent with the observations of the test pits excavated at the site. A well log for a site directly across Row River Road fill overlying brown sandy gravel and silty clay with cobbles to at least 12-feet BGS. Well logs in the site vicinity are similar and show fine-grained soil overlying alluvial sand and gravel-cobble deposits to around 50-feet BGS. Underlying the alluvium are sedimentary rocks described as claystone in the well logs to at least 298-feet BGS.

2.2 Groundwater

Groundwater seepage was observed in the gravel deposits at approximately 4-feet BGS in TP-1 and in several isolated near-surface areas of sidewalls in other test pit excavations. Sidewall seepage should be expected during the wet season (typically late October till May) from perched lenses of water during the wet season. A well log from a nearby site was reviewed and lists static water at 8-feet BGS.

Perched groundwater lenses are most likely to be encountered should excavation activities take place during the wet season when rainstorms are more intense and frequent and soils are nearing saturation. Groundwater is not expected to impact shallow foundations, but dewatering may be necessary for in-ground utility work. Utilities deeper than 5-feet BGS will likely require shoring or laying back of sidewalls at a slope of 1:1 (H:V) if soils are wet.

3.0 GEOLOGIC SETTING

The following sections describe the regional and local site geology. Our field findings are consistent with the geologic mapping of the site area by the Oregon Department of Geology and Mineral Industries.

3.1 Regional Geology

The subject site is located near the southernmost portion of the Willamette Valley, where the Coast Range and the Cascade Mountains are differentiated more by geology than topography. In Oregon, the Willamette Valley is an elongate basin which narrows at both ends before terminating in the Calapooya Divide to the south and the Columbia River to the north. The basin is approximately 130 miles long and 40 miles wide. The valley is drained by the Willamette River and drops from an elevation of approximately 400-feet at Eugene, and to near sea level at the northern end of the basin where the Willamette River drains into the Columbia River.

The Willamette River Valley in the area of the subject site is believed to be underlain by undifferentiated sedimentary rock, tuffs, and basalt from the Miocene and Oligocene epochs (approximately 15 to 35 million years ago). Subsequent compression forces and uplifting of the Cascade and Coast Range Mountains depressed the Willamette River Valley. The rapid uplift of the Cascade and Coast Range mountains steepened stream gradients causing increased erosion of the mountains and resulting deposition of thick gravel layers incised within the fluvial deposits.

3.2 Site Geology

The DOGAMI interactive Geologic Map of Oregon and the USGS OM-110 map the geologic unit on the site as recent Quaternary Surficial Deposits which are described as deposits of unconsolidated sediments, including alluvium, colluvium, river and coastal terrace deposits. The underlying geology of the large hillside formation to the southeast of the site is mapped as Oligocene age Volcanic Rocks from the Little Butte Volcanics which is described as basalt with volcanic rocks of widely varying composition.

The nearest mapped active faults are located approximately 16.2-miles southwest and 20-miles to the northeast of the site. Faults are also mapped 2.0-miles west of the site and 4.8-miles north of the site. These faults are not known to be active; however, seismic activity is not uncommon in the Willamette Valley as evidenced by the 1993 Scotts Mills Earthquake east of Salem that registered a 5.7 Richter magnitude, and most recently a 4.2 magnitude earthquake about 12-miles east of Eugene on July 4, 2015.

4.0 CONCLUSIONS

Based on our field observations, subsurface explorations, and data analyses, we conclude that the site is geologically and geotechnically suitable for the proposed development provided that the recommendations of this report are incorporated into the design and construction of the project.

5.0 RECOMMENDATIONS

The following sections present site-specific recommendations for site preparation, drainage, foundations, utility excavations, and slab/pavement design. General material and construction specifications for the items discussed herein are provided in Appendix B.

5.1 Site Preparation and Foundation Subgrade Requirements

The following recommendations are for earthwork in the building foundation areas, public roadway, and private parking areas. Earthwork shall be performed in general accordance with the standard of practice as generally described in Appendix J of the 2019 Oregon Structural Specialty Code and as specified in this report.

All areas intended to directly or laterally support structures, roadways, or pavement areas shall be stripped of vegetation, organic soil, unsuitable fill, and/or other deleterious material such as moisture softened exposed soil. These stripping's shall be removed from the site or reserved for use in landscaping or non-structural areas. In areas of previously existing trees, vegetation, or previously placed fill, the required depth of site clearing/stripping may be increased.

The subsurface conditions observed in our site investigation test pits are relatively consistent; however, the test pits only represent those specific locations on the site. Should soft or unsuitable soils extend to a depth greater than that described herein, or areas of distinct soil variation be discovered, this office shall be notified to perform site observation and additional excavation may be required.

Building Foundation Subgrade Preparation

The depth to suitable subgrade for shallow building foundations is expected to be at least 24- to 30-inches BGS, below any existing fill, organics, or areas of high plasticity clay as encountered in TP-1. Areas where building and pavement are present were not evaluated during the site explorations, and after demolition BEI asks that they be contacted to assess subgrade depths in these areas. Subgrade preparation for foundations bearing in the upper fine grain soil requires that any soft or saturated fine grain soil be removed to medium stiff soil to maintain a similar consistency across the building pad area. The Geotechnical Engineer of Record (GER) or designated representative should visit the site to approve the subgrade soil prior to the placement of structural fill or foundation forms.

The bearing capacity of the existing subgrade at approximately 2.5-feet is considered to be less than 1000 psf, to provide subgrade suitable for a bearing capacity of 2,000 psf and acceptable settlement qualities, the placement of a compacted aggregate with a minimum thickness of 18-inches is recommended under building foundations bearing in the fine grain alluvial soil. If excavation of building pads occurs during the wet season or heavy precipitation occurs when building pad subgrade is exposed, additional excavation and an increase in aggregate thickness to 18-inches will likely be required. The placement of a bi-axial geogrid atop the separation fabric may be an alternative to additional aggregate thickness. Drainage of building pads will be essential to prevent deterioration of the exposed subgrade. Improvement methods may include excavation and fill and/or placement of geotextile fabric or geogrid composites. A BEI representative shall approve exposed subgrade materials and observe proof-rolling activities.

As the subgrade soil is exposed, placement of compacted aggregate should be completed in a timely manner to minimize moisture fluctuations in the subgrade soil. Installation of a geotextile separation fabric on the subgrade soil is recommended and may minimize the loss of aggregate into the subgrade soil. If building footprint excavation encounters the stiff to hard, gravelly soil observed in the test pits, the recommended aggregate thickness may be decreased at the discretion of the GER after on-site observation.

Compacted aggregate fill shall consist of well graded aggregate compacted to at least 90% relative compaction as determined by ASTM D-1557 (modified Proctor) and should be placed in conformance with the recommendations in Section 5.3 below. Conformance with the recommended compaction levels shall be confirmed with compaction testing by nuclear densometer (ASTM D6938) or proof rolls with a loaded 10 CY haul truck. On site material is not recommended to be used as structural fill under building foundations. An angular 3-inch minus sized aggregate may be used in the lower 6-inches of compacted aggregate in lieu of separation fabric. The excavation and placement of engineered fill shall extend a minimum horizontal distance equal to the depth of the fill beyond the outside edge of footings or 24-inches, whichever is greater.

If bearing capacities higher than 2,000 psf are required for foundation design we recommend transferring foundation loads to the underlying dense gravel material expected at 5-feet or greater.

Driven piles, helical piers, micro-piles, stone columns, or auger cast piles are suitable deep foundation methods. Bearing capacities are discussed in Section 5.6 below.

Prior to placing fill or foundation concrete forms, exposed subgrade materials shall be observed by the GER or designated representative. Areas of soft or saturated soil shall be removed to additional depth, or otherwise improved at the discretion and direction of the GER. Once exposed, suitable subgrade shall be covered with compacted crushed aggregate in a timely manner to mitigate moisture fluctuations in the soil.

Areas of Private Access and Parking Improvements

The depth to suitable subgrade for roadway structural sections is below the organic topsoil zone and any remaining stumps or roots from previously existing trees. Areas of high plasticity clay such as the material encountered to approximately 36-inches BGS in TP-1 shall be removed from structural or pavement areas. Should grading plans require engineered fill, see section 5.2 for engineered fill requirements. Prior to placing compacted crushed rock aggregate for the roadway structural section as described in Section 5.11 below, the exposed subgrade shall be approved by the GER or approved representative.

Localized soft areas may be encountered during excavation activities, particularly during periods of wet weather, and will require removal and replacement with structural fill. Proof rolls with a loaded 10 CY haul truck or equivalent vehicle shall be conducted on the prepared subgrade prior to the placement of compacted aggregate, and areas of deflection under wheel loads shall be corrected prior to placing the recommended section of compacted aggregate. If moisture conditions prohibit proof rolls with loaded trucks on the subgrade, proof rolls shall be conducted on top of the recommended aggregate thickness and any observed areas of deflection under load shall be corrected prior to paving.

Utility trenches excavated to depths below the top of the subgrade elevation shall be backfilled with material compacted to 90% relative compaction as determined by ASTM D1557 or AASHTO T-180 (modified Proctor). We expect that fill placed on the site will be imported granular material; use of the native soil on site for fill will require moisture conditioning and appropriate compaction equipment selection. Sampling of on-site material to be used as engineered fill will be required for Proctor testing to generate moisture-density curves unless provided by the supplier. The compaction of fill material supporting pavement areas shall be confirmed by compaction testing by nuclear densometer and the proof roll process described above.

5.2 Geotechnical Construction Site Observations

Periodic site observations by a geotechnical representative of BEI are recommended during the construction of the project; the specific phases of construction that should be observed are shown in Table 2.

Recommended Construction Phases to be Observed by the Geotechnical Engineer			
At completion of subgrade excavation	Subgrade observation by the geotechnical engineer before aggregate placement.		
Imported fill material	Observation of material or information on material type and source.		
Placement or Compaction of fill material	Observation by geotechnical engineer or test results by qualified testing agency.		

Table 2: Construction Phases

5.3 Structural Fill Recommendations

All engineered fill placed on the site shall consist of homogenous material and shall meet the following recommendations.

- Prior to placement on-site, the aggregate to be used as structural fill shall be approved by the GER. If no Proctor curve (moisture-density relationship) for the material performed within the last 12-months is on file, a material sample will be required for testing to determine the maximum dry density and optimum moisture content of the aggregate or fill material.
- The structural fill shall be moisture conditioned within +/- 2% of optimum moisture content and compacted in lifts with loose lift thickness not exceeding 12- inches.
- Periodic visits to the site to verify lift thickness, source material, and compaction efforts shall be conducted by the GER, or designated representative, and documented.
- The recommended compaction level for crushed aggregate or soil fill is 90% relative compaction, respectively, as determined by ASTM D-1557 (modified Proctor). Compaction shall be measured by testing with nuclear densometer ASTM D-6938, or D-1556 sand cone method on structural fill 12-inches in thickness or greater.
- If on-site or imported non-granular material is approved for structural fill placement, a sample of the material shall be collected for modified Proctor testing to use for field compaction test comparison. If, due to the nature of the on-site material compaction testing is not possible due to factors such as oversize rock content and variable material, proof rolls with a fully loaded 10cy haul-truck, or equivalent equipment, shall be observed at regular intervals. Observed areas of soft soil will require over-excavation and replacement with suitable material.

5.4 Excavations

The site soils are classified as either OSHA Type B or C soils for the upper 10-feet of the site soil profile. Heavy equipment or stored materials should not be placed within 10-feet of open excavations.

5.5 Drainage and Infiltration Testing

An on-site storm drainage system is expected to be engineered for this project. Our understanding is storm water infiltration or filtration facilities will be designed and installed as a primary means to manage surface runoff. Four encased falling head infiltration tests were performed on February 17, 2022. Infiltration tests were conducted with 6-inch diameter pipes set and sealed within the test pit. Infiltration test locations are shown on the attached Figures 2. Results of the infiltration testing are listed below with no factor of safety.

Test Location	Test Depth (Inches)	Measured Hydraulic Conductivity, k (in/hr)
IT-1	57.0	60
IT-2	54.5	66
IT-3	57.0	45
IT-4	45.0	8

 Table 3: Hydraulic Conductivity

Results from the infiltration testing indicate that the disposal of stormwater via on-site infiltration is likely feasible. The slower rate of infiltration measured in IT-4 was likely a result of a higher clay content in the soil at the testing depth. Alteration of existing grades for this project will likely change drainage patterns but should not adversely affect adjacent properties. Perimeter landscape and hardscape grades shall be sloped away from the foundations and water shall not be allowed to pond adjacent to footings during or after construction.

5.6 Soil Bearing Capacity and Settlement

Conventional perimeter style foundations and spread footings for column loads are suitable for the proposed building construction and we recommend that loads are distributed evenly to mitigate the potential for differential settlement. If foundation areas are prepared as described in Section 5.1 of this report with 18-inches of compacted aggregate, an allowable bearing capacity of 2,000 psf can be used for design. For foundation loads bearing on the alluvial gravel deposits a bearing capacity of 4,000 psf may be used. Areas of extensive landscaping may have thicker horizons of softer soil with bearing capacities of less than 1000 psf. Depending on site grading plans and the time of the year in which construction takes place, these areas will likely require over excavation or an increase in aggregate thickness to achieve a bearing capacity of 2000 psf. The extent and location of these areas, in addition to the mitigation method will likely need to be determined as earth work progresses through the site. The bearing capacity may be increased by 1/3 for short term loading, such as wind or seismic events.

5.7 Slabs-On-Grade

After site preparation to expose suitable subgrade, load bearing concrete slabs shall be underlain by a minimum of 12-inches of compacted, crushed aggregate. If soft or saturated subgrade is encountered, over-excavation and replacement with engineered fill will be required. A free draining aggregate is recommended beneath structural slabs.

The modulus of subgrade reaction (K) of the in-situ soil at about 24-inches below existing grade is 120 lb/in³ and the correlated California Bearing Ratio of the soil is correlated to be four in the onsite fine grain soils.

5.8 In-Situ Moisture Content & Soil Shrink/Swell Potential

In general, the underlying native silty soils have a low to moderate shrink/swell potential with Free Swell (IS 2720) test results ranging from 30% to 50%. Except for a sample of the plastic clay encountered in TP-1 that was collected and tested with a result of 70% which is considered to be high. The underlying alluvial gravel deposits have a low shrink/swell potential. In-situ moisture content of the samples collected from the site ranged from 30% to 32%.

5.9 Friction Coefficient and Earth Pressures

Because of the variable conditions encountered in site test pit excavations, the lateral earth pressures would be best calculated after locations and retaining structure elevations are finalized. Although not expected, should retaining walls be required BEI asks that our office be contacted once plans are finalized so that we may assess the location and provide parameters for wall design.

5.10 Wet Weather/Dry Weather Construction Practices

The site material is moisture sensitive and will soften with exposure to precipitation. The near surface fine grain soil shall be covered with compacted aggregate in a timely manner after excavation to suitable subgrade to minimize soil moisture fluctuations. BEI recommends that foundation subgrade preparation and general site earthwork be performed during the dry season, generally June through September.

Construction during the wet season will likely require special drainage considerations, such as covering of excavations, pumping to mitigate standing water in footing excavations, additional aggregate depth, and/or over-excavation of moisture softened soils.

5.11 Pavement Design Recommendations

For new asphalt concrete (AC) pavement installation in parking areas, we recommend a minimum pavement thickness of 3-inches of AC over a minimum of 12-inches of compacted crushed aggregate base material. We recommend that the AC thickness be increased to 4-inches in areas of heavier traffic, such as refuse truck routes or delivery vehicles with the same rock section as described above.

Prior to placement of base rock, any soft soil, wet soil, or organic soil shall be removed from the parking subgrade. We recommend that the subgrade be moisture conditioned and compacted to at least 90% of the material's maximum dry density as determined by AASHTO T-180/ASTM D-1557 (modified Proctor). If excavation activities take place during the wet season, a thicker rock section can be used in lieu of moisture conditioning of the subgrade soil.

Pavement Criteria	Asphalt Concrete (inches)	ABM Section (inches)
Heavy Traffic Section	4	12
Private Road Section	3	12

Table 4: Recommended Structural Pavement Section for	private read costion
Table 4. Recommended Structural Pavement Section for	private road section

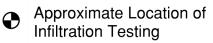
The pavement recommendations discussed above are designed for the type of vehicle use on the site after construction completion, not for construction vehicle traffic which is generally heavier, occurs over a short time, and impacts the site before full pavement sections are constructed. The construction traffic may cause subgrade failures and the site contractor should consider overbuilding designated haul routes through the site to mitigate soft areas at the time of final paving.

5.12 Seismic Site Classification and Hazards

Based on the soil properties encountered in our test pits explorations and nearby well log information, a Seismic Site Class D designation, stiff soil (Table 20.3-1 ASCE 7-16) is recommended for design of site structures. OSSC 2019 (1803.5.11) required criteria for hazards the geotechnical investigation shall address for seismic site class designations C through F are listed below.

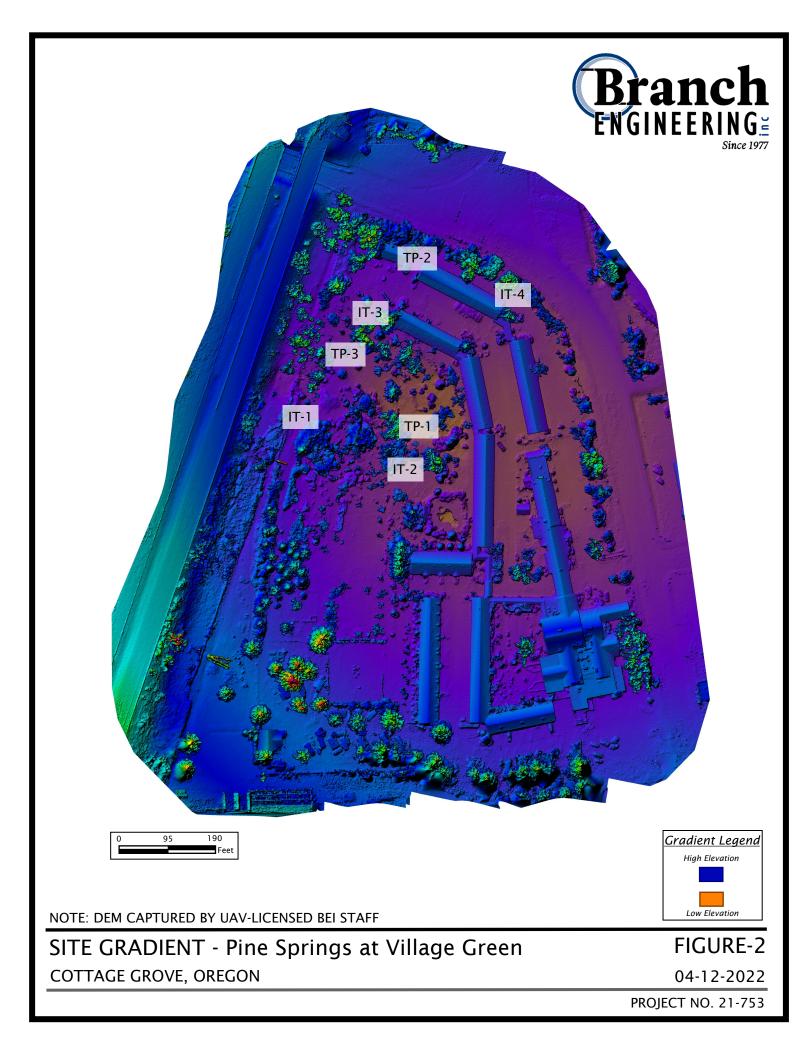
- <u>Slope Instability:</u> The site is mapped low to moderate risk for land sliding with isolated areas of the Interstate 5 fill slopes and ridge to southeast of the site mapped at a high risk. No existing landslides are mapped in locations that may impact the site and no signs of recent or existing slope instability such as hummocky terrain or scarp zones were observed during our visit. The risk landslides impacting the site is low.
- <u>Liquefaction</u>: The site is not mapped as having liquefaction risk when viewed in DOGAMI's Statewide Geohazard Viewer. We did not observe highly liquefiable soil during our site investigation. The risk of surface damage due to liquefaction is low.
- <u>Total and Differential Settlement:</u> The estimated amount of total and differential settlement is less than ³/₄-inch and ¹/₂-inch, respectively, over a 20-foot span of similarly loaded footings, provided subgrade preparation follows the recommendations in Section 5.1 of this report.
- <u>Surface Displacement due to faulting or seismically induced lateral spreading or lateral</u> <u>flow:</u> The closest faults to the site are not known to be active. Surface displacement or seismically induced lateral spreading is not expected at the site.
- <u>Tsunami/seiche:</u> The closest water body is the Coast Fork of the Willamette River, which poses no risk of a seiche or tsunami.

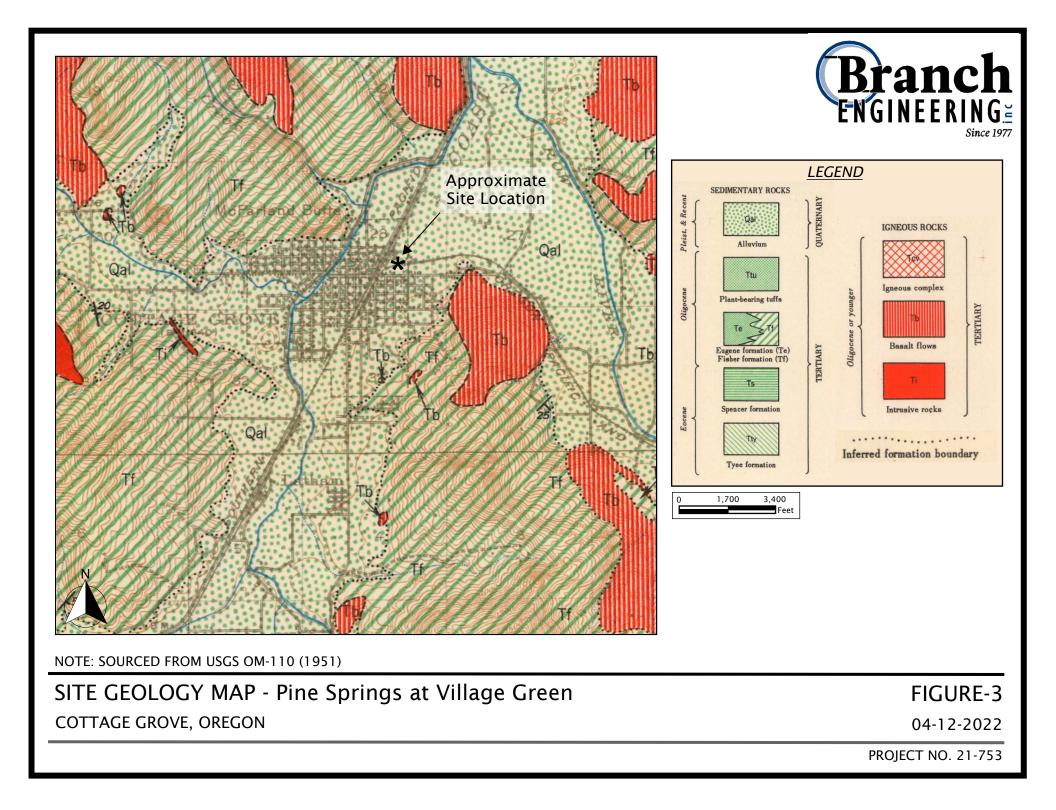
6.0 REPORT LIMITATIONS


This report has presented BEI's site observations and research, subsurface explorations, geotechnical engineering analyses, and recommendations for the proposed site development. The conclusions in this report are based on the conditions described in this report and are intended for the exclusive use of Mr. Colin Kelly, Timberview Construction and their representatives for use in design and construction of the development described herein. The analysis and recommendations may not be suitable for other structures or purposes.

Services performed by the geotechnical engineer for this project have been conducted with the level of care and skill exercised by other current geotechnical professionals in this area. No warranty is herein expressed or implied. The conclusions in this report are based on the site conditions as they currently exist and it is assumed that the limited site locations that were physically investigated generally represent the subsurface conditions at the site. Should site development or site conditions change, or if a substantial amount of time goes by between our site investigation and site development, we reserve the right to review this report for its applicability. If you have any questions regarding the contents of this report please contact our office.

APPROXIMATE SCALE


Site Photo By Licensed BEI UAV Pilot



SITE EXPLORATION MAP- PINE SPRINGS AT VILLAGE GREEN COTTAGE GROVE, OREGON FIGURE-1

3-9-2022

PROJECT NO. 21-753

APPENDIX A:

- TEST PIT LOGS

- INFILTRATION TESTING RESULTS
- OWRD WELL LOGS
- USDA SOIL SURVEY

		RSE GRAINED S			USCS GRAIN SI	
RELATIVE	SPT N-VALUE	D&M SAMPLER	D&M SAN	APLER	FINES	< #200 (.075 mm)
DENSITY		(140 lbs hammer)	(300 lbs ha	ımmer)	SAND Fine	
VERY LOOSE	< 4	< 11	< 4			dium #40 - #10 (2 mm)
LOOSE	4 - 10	11 - 26	4 - 10			arse #10 - #4 (4.75 mm)
AEDIUM DENSE	10 - 30	26 - 74	10 - 3	-	GRAVEL Fine	
DENSE	30 - 50	74 - 120	30 - 4			arse 0.75 - 3 inch
VERY DENSE	> 50	> 120	> 47		COBBLES	3 - 12 inches
			, ₁ ,			
	SPT N-VALUE	D&M SAMPLER	D&M SAN		POCKET PEN. /	MANUAL PENETRATION TEST
		(140 lbs hammer)			UNCONFINED (TSF)	
VERY SOFT	< 2	< 3	< 2		< 0.25	Easy several inches by fist
SOFT	2 - 4	3 - 6	2 - 5	5	0.25 - 0.50	Easy several inches by thumb
MEDIUM STIFF	4 - 8	6 - 12	5-9)	0.50 - 1.00	Moderate several inches by thumb
STIFF	8 - 15	12 - 25	9 - 19	9	1.00 - 2.00	Readily indented by thumb
VERY STIFF	15 - 30	25 - 65	19 - 3	31	2.00 - 4.00	Readily indented by thumbnail
HARD	> 30	> 65	> 31		> 4.00	Difficult by thumbnail
UNIFIED SOI	L CLASSIFICA	ATION CHART				
MAJOR DIVISIO	DNS		GROU	JP SYMB	OLS AND TYPICAL N	AMES
	GRAVELS: 50	Z CLEAN	GW	Well-ar	aded aravels and c	ravel-sand mixtures, little or no fines.
COARSE-	or more	GRAVELS				gravel-sand mixtures, little or no fine
GRAINED	retained on	GRAVELS WI			avels, gravel-sand-sil	
SOILS:	the No. 4 siev				gravels, gravel-san	
More than 50% retained			SW			avelly sands, little or no fines.
on No. 200	SANDS: 50% (gravelly sands, little or no fines.
sieve	more passing				nds, sand-silt mixture	
51010	the No. 4 siev	FINES		-	sands, sand-clay m	
INE-GRAINED			ML		nic silts, rock flour, cl	
SOILS:						nedium plasticity, lean clays.
Less than		LESS THAN 5				ty clays of low plasticity.
50% retained	SILT AND CLA		мн		nic silts, clayey silts.	
on No. 200			50 CH		nic clays of high pla	sticity, fat clays.
sieve		OR GREATE			c clays of medium t	
Н	IGHLY ORGANI		PT	Peat, n	nuck, and other high	nly organic soil.
	ONTENT			STRUC	CTURE	
DRY: Absence	of moisture, du	usty, dry to the touc	h I	STRATI	-IED: Alternating lav	ers of material or color > 6mm thick.
		aves no moisture on			ATED: Alternating la	
	moisture on ha				-	finate fracture planes.
	e water, usually					blished, or glossy fracture planes.
		Saloratoa				t can be broken down into small
PLASTICITY	DRY STRENGTH	DILATANCY TO	UGHNESS		ar lumps which resist	
ML Non to Lov			, can't ro l			of different soils, note thickness.
CL Low to Med	d. Med. to High gh Low to Med.		v to Med.			olor and appearance throughout.
	gh High to V.High		High			
		EXPLANATION				
		est split barrel samp		G	Grab sample	
	and Moore sam			мс		
	g Liquid Limit	p.01		MD	Moisture Density	
	g Plastic Limit			UC	Unconfined Com	pressive Strength
	enetrometer					
VS Vane Sh						
						TABLE A-

Branch GEOTECHNICAL SITE INVESTIGATION EXPLORATORY KEY

stace 1977 310 5th Street Springfield, Oregon | p: 541.779.2577 | www.branchengineering.com

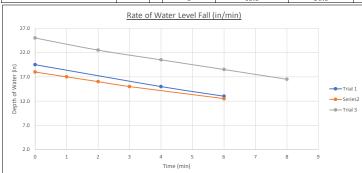
Client		Branch ENGINEERING WING WARDER			·): IT et 1 o	
-	t Number: tarted:		Project Name: Project Norme: Project Location: Location: Location: Location: Location: Locaticude: Latitude: Latitud	Pine Springs Devlo Row River Road SPR Longitude:	d Cottag		e, Oreg :		RJD)		
Metho Equipn Notes:	od: nent:	Test Pit Excavation Tracked Excavator	Ground Water Levels									
Depth	Graphic	Material Descriptio	n	Sample	Pocket Pen. (tsf)	Ś	MC: @ PL LL:					
1		Soft, Moist, Dark Brown Clay with Trace Silt and Or	ganics.				10 20			30 70) 80 9	¥0
2		Medium Stiff, Moist, Brown-Gray High Plasticity Cla	ay and Fine Roots.									
5	• • •	Medium Dense, Moist, Brown Gray Silt, Sand, and	Rounded Gravel-Cobble.									
7												
9										+++ +++ +++		
10 -			Fines Content	⊗ Moisture Cor	ntent	•	■ P	lastic I	Limit a	 nd Lie	 quid Li	imi [†]

	(Branch						Tes	t Pit	: ID	: IT-:	2
										She	et 1 c	٥f
		civil · transportation structural · geotechnical SURVEYING										
Client				Pine Springs Devlo					1			
1	t Number		Project Location:	Row River Roa				on				
Date S	Started:	Feb 17 2022 Completed: Feb 17 2022 Branch Engineering Inc. Feb 17 2022	Logged By: Latitude:	SPR Longitude:		ked By		evatio	RJE)		
Metho		Test Pit Excavation	Ground Water Levels					valit	<i>"</i>			-
Equip		Tracked Excavator										
Notes												-
					ċ	vt.	MC: @					
Depth	Graphic	Material Description	•	Sample	Pocket Pen. (tsf)	Dry Unit Wt. (pcf)	PL LL:		.			
De	Gra		•	San	C ge	59	:					
					ď	ā	10 20) 30 4	40 50	60 7 [.]	0 80 9	90
-	55 55 55	Soft, Moist, Dark Brown Clay with Trace Silt and Org	anics. Interpreted as Fill.				++++	Ť	ΗT			Ť
-		,	J									
-												t
1 -							ЩШ	$\parallel \parallel$	Ш	Ш	Ш	
-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						+ + +	+++	++++	++	+++	╞
-	<u></u>											
2 -								+++	+++	++		╞
-												
-	1///	Medium Stiff, Moist, Brown Clay with Trace Silt and	Sand, Medium Plasticity.	•								t
3 -	1///											
	1///											
-								+++	++++		┝┿┿┿	+
4 -								+++	++++	+++	+++	╞
		 _ Medium Dense, Moist, Brown-Gray Medium Graine	ed Sand with Trace Silt an	d								
		Rounded Gravel.										Ī
5 -								111			\square	
5 -												
-							+ + +	+++	++++	+++	┢╋┿╋	+
6 -								+++				t
												Γ
7 -								+++	++++		┝┿┿┿	-
-								+++	++++	+++	r+++-	┝
8 -												T
							ЩЩ	$\parallel \parallel$				
9 -							$\left + + + \right $	+++	++++	+++	+++	╞
-							$\left + + + \right $	+++	$\left \right \right $	+++	_ 	╞
10 -												-
			\Diamond Fines Content	Ø Moisture Co	ontent	•	-∎ P	lastic	Limit a	nd Li	quid Li	m

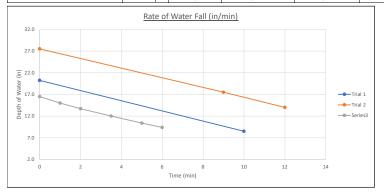
	(•	Test	Pit			3 L of 1
Client	Colin	Kellev	Project Name: P	ine Springs Devlo	pment	at the \	/illage	e Gree	n			
	t Number		Project Location:	Row River Roa								
Date S	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR	Chec	ked By	:		R	ŊD		-
Contra		Branch Engineering Inc.	Latitude:	Longitude:			E	Elevati	ion:			
Metho		Test Pit Excavation	Ground Water Levels									
Equip		Tracked Excavator										
Notes	:											
Depth	Graphic	Material Description		Sample	Pocket Pen. (tsf)	Ś	MC: PL L	⊗ L: ●-	-8			
							10	20 30	40 5	0 60	70 80) 90
-	<i>¥¥¥</i>	Soft, Moist, Dark Brown Clay with Trace Silt and Orga	nics. PVC Pipe at 10-inch	es	1			+++	\square		╉┰╇	
-		BGS.										
-												
=												
1 -					1							\ddagger
-												
-												
2 -	1777	Medium Stiff, Moist, Brown Clay with Trace Silt and S	and, Medium Plasticity.									
-												
-												
3 -									Ш			
	1///											
-	1///								Ш			
-	1///											
4 -	1///											$\parallel \mid$
	¥///											
_	¥//4_								+ +			+++
-												
5 -							$\left + + \right $	┽┼┼┤	$\left \right $	+++	+++	+++
=												
-								++++			+++	+++
-												
6 -												
-												
-					1		$\parallel \parallel$		\square			\ddagger
7 -												
-					1		Ш		Ш		Ш	
=												
8 -					1		Щ		ЩЦ		Щ	$\parallel \mid$
					1				$\left \right \left \right $			
-					1			+++		+++	+++	+++
=					1				$\left \right \left \right $			
9 -					1			+++	++	+++	+++	+++
-					1			+++	++	+++	+++	+++
=					1				$\left \right \left \right $			
10 -					+							
	ı I		Fines Content	⊗ Moisture Cor	ntent	•	-	Plastic	: Limi	t and	Liquid	l Limit

	(Test	Pit I	D: I	IT-4	
Client:	Colin	civil transportation trottori - gotechnical sub v v v i k G	Project Name:	Pine Springs Dev	lonmont	at the	Villago (Groop	S	hee	t1of	[:] 1
	t Numbe		Project Location:	Row River Ro								
-	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR		ked By			RJD			
Contra	ictor:	Branch Engineering Inc.	Latitude:	Longitude		-		evatio	n:			
Metho		Test Pit Excavation	Ground Water Level	s								
Equipr		Tracked Excavator	$\underline{\nabla}$									
Notes:												
												_
Depth	Graphic	Material Description		Sample	Pocket Pen. (tsf)	Dry Unit Wt. (pcf)	MC: @		i			
-	6			S	Poc	Dry	10 20	0 30 40	0 50 6	0 70	80 90)
-	55 55 55	Soft, Moist, Mottled Brown-Gray Clay with Trace Silt	and Organics.							┆┯╇╴		Т
-			U									
-												T
	\$\$\$\$\$ \$\$											
1 _		_										
-		Soft to Medium Stiff, Moist, Brown to Reddish Brown	n Clay, Trace Silt and Sa	and,				++++		⊢┼┼		_
	ШИ	Scattered Gravel.										
2 -	ШИ							++++	+++-		$\left \right \right $	_
=	ШИ											
-								++++	++++			+
	ШИ											
2	ШИ							++++				-
=												
=												
4										Ш		
								++++	+++-	┍┼┼╴	$\left \right \left \right $	_
5 -								++++	++++			-
-												
												T
6 -												
-								++++		⊢┼┼		
7 -								++++		┝┼┼╴		_
=												
								++++	++++	1		-
-												
8 _												
-												
-											$\ \ $	
9 -								++++	$\downarrow\downarrow\downarrow\downarrow\downarrow$	\square		_
-								++++	+++	+++		+
=												
10 -					-	1						
			Fines Content	Ø Moisture C	ontent	•	.⊥ -∎ P	lastic L	imit an	d Lia	uid Lin	 nit

	Ć	Branch ENGINEERING [™]									Test	Pit I		TP- et 1 (
		civil - transportation structural - geotechnical S U R V E Y I N G													
Client					Project Name:	Pine Sprin						1			
	t Number:				Project Location:		iver Roa				gon				
Date S Contra	started:	Feb 17 2022	Completed: For	eb 17 2022	Logged By:	SPR		_ Chec	ked By		evatio	RJE)		
Metho		Branch Engineer	ing inc.		_Latitude: Ground Water Leve		gitude:				evano)n: -			
Equip		Tracked Excavator				.15									
Notes															
						_									
Depth	Graphic		Mater	ial Description			Sample	Pocket Pen. (tsf)	Ś	MC: 0 PL LL		8			
							0,	Po	Dry						
		Coft Maist Dark Dra		and Cilt and Organ	iec					10 2	20 30 4	40 50	50 70	3 80	90
		Soft, Moist, Dark Brow	whiciay with the	ice siit and Organ	ics.										
-										$\left \right $		++++	+++		++
-															
-		Medium Stiff, Moist, E		h Plasticity Clay ar	nd Fine Roots. Grou	ndwater									
		Seepage in Sidewalls.													
2 -												+++	+++	+++	
-															
3 -															
-													+++		
4 -		Medium Dense, Mois	t. Brown-Grav N	/ledium Grained S	and with Trace Silt a	and						+++	++	+++	++
-		Rounded Gravel-Cobb													
5 -															
-										$\left \cdot \right + \left \cdot \right $		++++	++	+++	
6 -															
-															
7 -													+++		
-													+++		++
8 -															
=												$\parallel \parallel$	+++	+++	\parallel
=															
9 -										+ +		$\{ \} \}$	+++	+++	++
-															$\uparrow\uparrow$
10 -															
10															
					Fines Content	⊗ Moi	isture Co	ntent	•	- I F	Plastic	Limit a	nd Lie	quid L	_imit

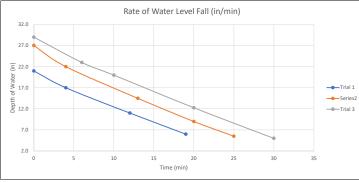

	(Branch ENGINEERING Success Civil - transportion Successful - transportion							Test		ID: ' Sheet		
Client	Colin k	Celley	Project Name:	Pine Spring	s Devlo	pment	at the V	/illage G	ireen				
Projec	t Number:		Project Location:	Row Riv							-		
Date S	tarted:	Feb 17 2022 Completed: Feb 17 2022	Logged By:	SPR		Chec	ked By:			RJD			
Contra	actor:	Branch Engineering Inc.	Latitude:	Long	itude:				vatior	ו: _			
Metho	od:	Test Pit Excavation	Ground Water Levels										
Equip		Tracked Excavator											
Notes	:												
			$\mathbf{\nabla}$										
Depth	Graphic	Material Description			Sample	Pocket Pen. (tsf)	Ś	MC: 8 PL LL:	●∎	. 50 (
	aaa							10 20	30 40	1 50 6		80	" 10
		Soft, Moist, Dark Brown Clay with Trace Silt and Orga Loose, Moist, Well Sorted Rounded Gravel, Interprete Stiff, Moist, Brown Clay with Trace Silt and Sand, Med Medium Dense, Moist, Brown-Gray Medium Grained Rounded Gravel.	ed as Drainage Rock (Fill) dium Plasticity.										
6	120100	Medium Dense, Moist, Brown-Gray Gravel-Cobble w	ith Minor Sand, Alluvium	ı.									
8													
													$\left \right $
9													
10 -													
10 -													
			Fines Content	⊗ Mois	ture Cor	ntent	•	∎ PI	astic Li	imit ar	ıd Liqu	uid L	imit

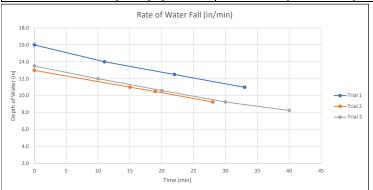
	Ć	Branch ENGINEERING WILL VERING						Те	st P			'P-3 1 of 1
Client	: <u>Colin K</u> t Number:			Pine Springs De					n			
	itarted: actor:	21-753 Feb 17 2022 Completed: Branch Engineering Inc. Test Pit Excavation	Project Location: Logged By: Latitude: Ground Water Levels	Row River R SPR Longitud	Che	cked By	:	egon Elevat		ND.		
Equip: Notes	ment:	Tracked Excavator										
Depth	Graphic	Material Description		Sample	Pocket Pen. (tsf)	Ś	MC: PL L	⊗ L: ●-	-8			
	0			ŭ	Poc	Dry	10	20 30	40 5	0 60	70 80	0 90
		Soft, Moist, Dark Brown Clay with Trace Silt and Organ	ics.					+++-				
		Medium Stiff, Moist, Brown-Gray Clay with Trace Silt.										
2												
3		Medium Dense, Moist, Brown-Gray Silt, Sand, and Rou	inded Gravel-Cobble.									
4								+++				
5												
								+				
6												
7												
8												
								+++				
9												
10 -												
			\Diamond Fines Content	⊗ Moisture	Content	•	-	Plastic	: Limi	t and I	Liquid	I Limit



Infiltration Test Results Project: Pine Springs at Village Green Testing Date: 2/17/2022 BEI Project Number: 21-753 Test Type: Encased Falling Head Infiltration Time = 0 at addition of H2O

		Time = 0 at ac	dition of H2O				
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 1		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	45.5	19.5			
Standpipe Height AGS (in)	8	4	50.0	15.0	1.13	67.5	
Test Depth BGS (in)	57	6	52.0	13.0	1.00	60.0	63.8
Volume of Water Added (gal)							
Clocktime at Start	11:12						
ASTM Soil Type	(GP-GC)						
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 2		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	2.25	0	47.0	18.0			
Clocktime	11:19	1	48.0	17.0	1.00	60.0	
		2	49.0	16.0	1.00	60.0	
		3	50.0	15.0	1.00	60.0	
		6	52.5	12.5	0.83	50.0	57.5
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 1 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-3 (in/hr)
Volume of Water Added (gal)	3.1	0	40.0	25.0			
Clocktime	11:49	2	42.5	22.5	1.25	75.0	
		4	44.5	20.5	1.00	60.0	
		6	46.5	18.5	1.00	60.0	
		8	48.5	16.5	1.00	60.0	63.8


		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 2 Trial 1		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	41.3	20.3			
Standpipe Height AGS (in)	7	10	53.0	8.5	1.18	70.5	70.5
Test Depth BGS (in)	54.5						
Volume of Water Added (gal)	2.5						
Clocktime	11:14						
ASTM Soil Type	(GP-GC)						
Infiltration Test 2 Trial 2		Elapsed Time (min)	Depth to Water Surface (in)	Depth of Water (in)	Rate of Fall (in/min)	Rate of Fall (in/hr)	AVG Rate of Fall T-2 (in/hr)
				. ,	(in/min)	(In/nr)	AVG Kate of Fall 1-2 (III/III)
Volume of Water Added (gal)	3.4	0	34.0	27.5			
Clocktime	11:26	9	44.0	17.5	1.11	66.7	
		12	47.5	14.0	1.17	70.0	68.3
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 2 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	0.5	0	45.0	16.5			
Clocktime	11:39	1	46.5	15.0	1.50	90.0	
		2	47.8	13.7	1.30	78.0	
		3.5	49.5	12.0	1.13	68.0	
		5	51.1	10.4	1.07	64.0	
		6	52.1	9.4	1.00	60.0	67.5



Infiltration Test Results Project: Pine Springs at Village Green Testing Date: 2/17/2022 BEI Project Number: 21-753 Test Type: Encased Falling Head Infiltration Time = 0 at addition of H2O

			ddition of H2O				
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 1		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	42.0	21.0			
Standpipe Height AGS (in)	6	4	46.0	17.0	1.00	60.0	
Test Depth BGS (in)	57	12	52.0	11.0	0.75	45.0	
Volume of Water Added (gal)	2.6	19	57.0	6.0	0.71	42.9	43.9
Clocktime at Start	11:37						
ASTM Soil Type	(GP-GC)						
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 2		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	3.1	0	36.0	27.0			
Clocktime	11:57	4	41.0	22.0	1.25	75.0	
		13	48.5	14.5	0.83	50.0	
		20	54.0	9.0	0.79	47.1	
		25	57.5	5.5	0.70	42.0	46.4
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 3 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	Avg Rate of Fall T-3 (in/hr)
Volume of Water Added (gal)	3.5	0	34.0	29.0			
Clocktime	12:34	6	40.0	23.0	1.00	60.0	
		10	43.0	20.0	0.75	45.0	
		20	50.8	12.3	0.78	46.5	
		30	58.0	5.0	0.73	43.5	45.0

Infiltration Test 4 Trial 1		Elapsed Time (min)	Depth to Water Surface (in)	Depth of Water (in)	Rate of Fall (in/min)	Rate of Fall (in/hr)	Avg Rate of Fall T-1 (in/hr)
Standpipe Diameter (in)	6	0	35.0	16.0			
Standpipe Height AGS (in)	6	11	37.0	14.0	0.18	10.9	
Test Depth BGS (in)	45	22	38.5	12.5	0.14	8.2	
Volume of Water Added (gal)	2	33	40.0	11.0	0.14	8.2	8.2
Clocktime	11:52						
ASTM Soil Type	(ML)						
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 4 Trial 2		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	1.6	0	38.0	13.0			
Clocktime	12:26	15	40.0	11.0	0.13	8.0	
		19	40.5	10.5	0.13	7.5	
		28	41.8	9.3	0.14	8.3	7.9
		Elapsed	Depth to Water	Depth of Water	Rate of Fall	Rate of Fall	
Infiltration Test 4 Trial 3		Time (min)	Surface (in)	(in)	(in/min)	(in/hr)	AVG Rate of Fall T-2 (in/hr)
Volume of Water Added (gal)	1.5	0	37.5	13.5			
Clocktime	12:55	10	39.0	12.0	0.15	9.0	
		20	40.4	10.6	0.14	8.4	
		30	41.8	9.3	0.14	8.1	
		40	42.8	8.3	0.10	6.0	7.9

STATE OF OREGON

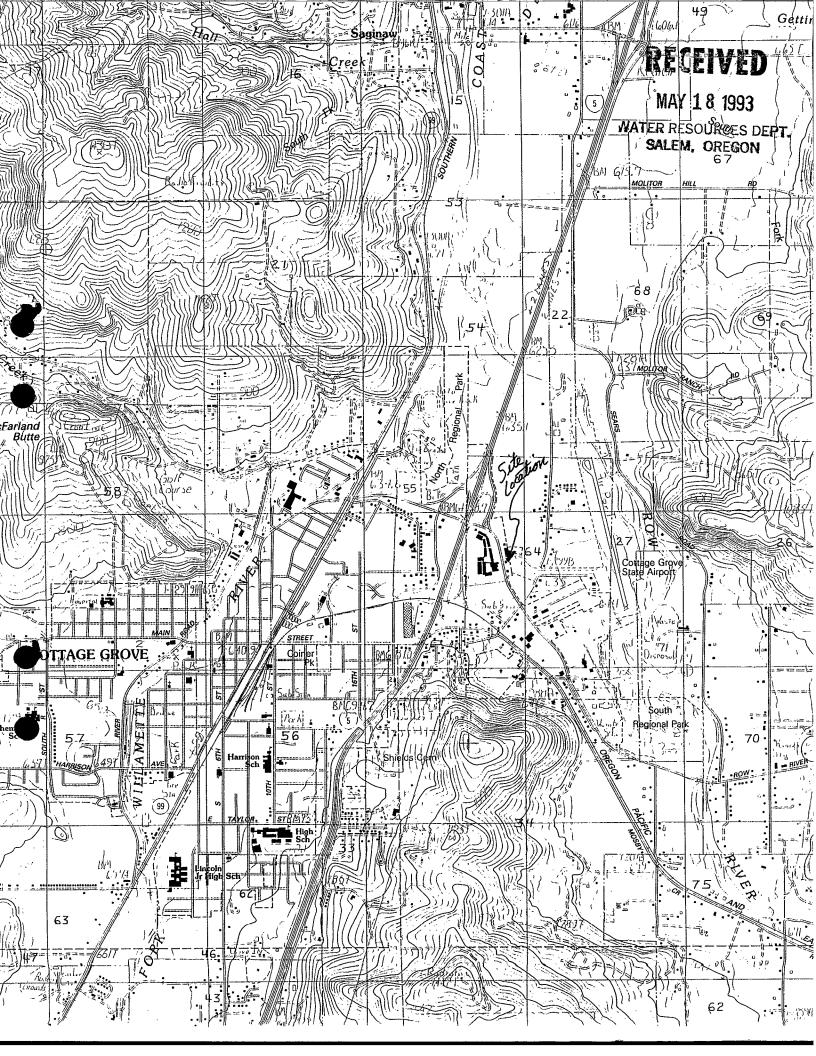
STATE ENGINEER, SALEM, OREGON 21 ENCINEER Please type or print) within 30 days from the date of well completion. SALEM. ORLECCoo not write above this line)

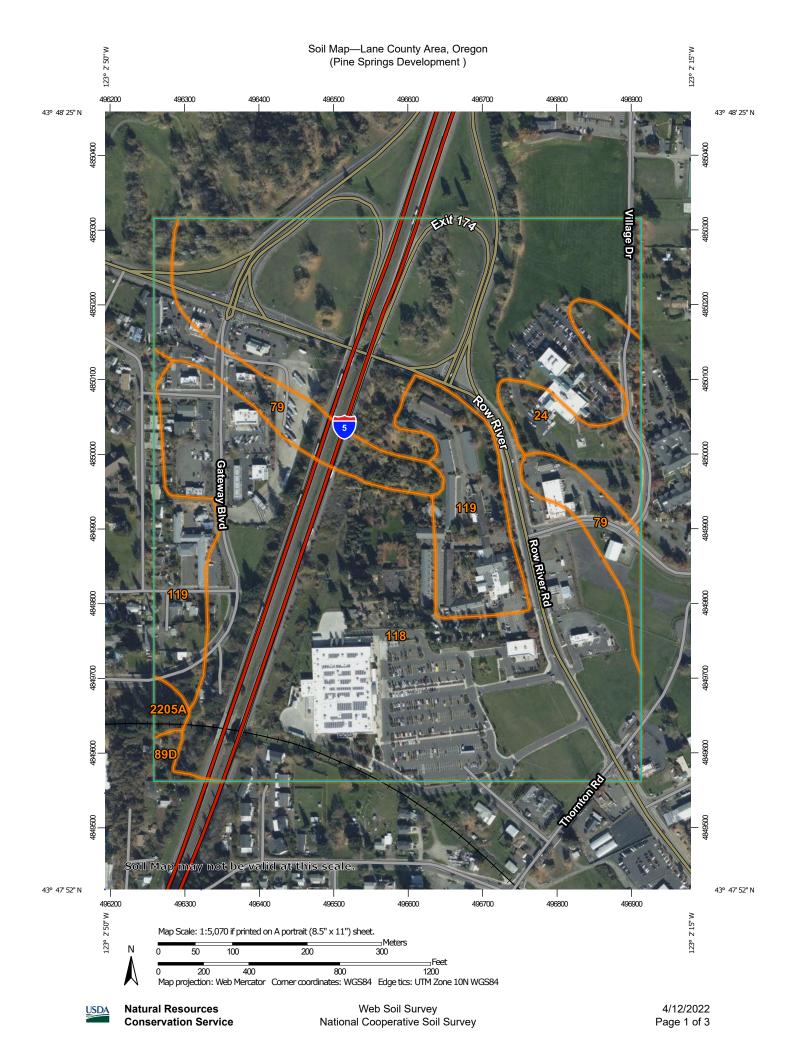
	· · · · · · · · · · · · · · · · · · ·	
(1) OWNER:	(10) LOCATION OF WELL:	
Name Pruitt Mink Farm	County Lane Driller's well nu	mber
Address Rt 1 Box 61 Cottage Grove, Oregon	34 34 Section 27 20S	<u>в. 3W w.м.</u>
	Bearing and distance from section or subdivision	on corner
(2) TYPE OF WORK (check):		<u> </u>
New Well 🕅 Deepening 🗌 Reconditioning 🗋 Abandon 🗌		
If abandonment, describe material and procedure in Item 12.	(11) WATER LEVEL: Completed w	ell.
(3) TYPE OF WELL: (4) PROPOSED USE (check):	Depth at which water was first found 47	ft.
Rotary X Driven Domestic X Industrial Municipal Cable Detted Detted	Static level 19 ft. below land s	urface. Date 9-30-7.
Dug 🔲 Bored 🗌 Irrigation 🗌 Test Well 🗌 Other 🔲	Artesian pressure lbs. per squar	e inch. Date
CASING INSTALLED: Threaded U Welded " Diam. from 0 ft. to 242 ft. Gage .250 " Diam. from ft. to ft. Gage " Diam. from ft. to ft. Gage PERFORATIONS: Perforated? U Yes X No.	(12) WELL LOG: Diameter of well h Depth drilled 55 ft. Depth of comple Formation: Describe color, texture, grain size a and show thickness and nature of each stratur with at least one entry for each change of format position of Static Water Level and indicate prim	eted well 55 ft. and structure of materials; n and aquifer penetrated, tion. Report each change in
e of perforator used	MATERIAL	From To SWL
Size of perforations in. by in.	Brown Top Soil	0 1
perforations from ft. to ft.	Clay & Gravel	1 19
perforations from ft. to ft.	Blue Claystone	19 46
	Black Samdstone	46 48
	Lavender Claystone	48 55
(7) SCREENS: Well screen installed? Yes X No		
Manufacturer's Name		
Type Model No.	аны. Баларанан (р. 1996) Саларанан (р. 1996)	
Diam Slot size Set from ft. to ft.		
Diam Slot size Set from ft. to ft.		
(8) WELL TESTS: Drawdown is amount water level is lowered below static level		
Was a pump test made? [] Yes X No If yes, by whom?	·	
Yield: gal./min. with ft. drawdown after hrs.		
		·····
Tested with air estimated 5 GPM could fluctuate		
EXAMPLE gal./min. with 36 ft. drawdown after 1 hrs.		
Artesian flow g.p.m.		
7 perature of water Depth artesian flow encountered ft.	Work started 9-29-71 19 Complete	
CONSTRUCTION:	Date well drilling machine moved off of well	<u>9-20-71 ₁₉</u>
Well seal-Material used <u>Cement Grout</u>	Drilling Machine Operator's Certification: This well was constructed under my Notesial under information moneted	direct supervision.
Diameter of well bore to bottom of seal	Materials used and information reported best knowledge and belief.	
Diameter of well bore below seal	[Signed] Corsey In Outries	Date 10-5-71,19
Number of sacks of cement used in well seal 15		
Number of sacks of bentonite used in well seal sacks	Drilling Machine Operator's License No.	
Brand name of bentonite	Water Well Contractor's Certification:	
Number of pounds of bentonite per 100 gallons		otion and this second to
of water lbs./100 gals.	This well was drilled under my jurisdi true to the best of my knowledge and bel	
Was a drive shoe used? 🕱 Yes 🗋 No Plugs	Name Casey Jones Well D illi	
Did any strata contain unusable water? 🔲 Yes 🕼 No	(Person, firm or corporation)	(Type or print)
Type of water? depth of strata	Address Route 7 Box 695 Pleasa	nt Hill, Oregon
Method of sealing strata off	reiman the hont - 1 (Lana.	· _ ~
Was well gravel packed? [] Yes []XNo Size of gravel:	[Signed] A. A. A. A. A. Water Well Contr	actor)
Gravel placed from	Contractor's License No	10-5-71, 19
10, U		

(USE ADDITIONAL SHEETS IF NECESSARY)

SP*45656-119

a. . . -----




. . . .

NOTICE TO WATER WELL GONERATOR IVE DATER WELL The original and first copy of the port EIVE DATER WELL are to be filed with the	L REPORT	and on i
WATER RESOURCES DEPARTMENT 2 9 1977 STATE OF SALEM, OREGON 97310 STATE OF within 30 days from the date of well completion. LER RESOURCES DEport write at	OREGON	203/3w-276d
SALEM. OREGON		
(1) OWNER:	(10) LOCATION OF WELL:	1.10
Name Loyde tHueAtt	County LANC Driller's well n	
Address 78960 Thorn Ton Rd	SE 14 N. W 1/4 Section 27 T. 205	<u>в. З<i>w</i>. w.м.</u>
(2) TYPE OF WORK (check):	Bearing and distance from section or subdivis	ion corner
New Well Y Deepening Reconditioning Abandon	2/4	
If abandonment, describe material and procedure in Item 12.		
(3) TYPE OF WELL: (4) PROPOSED USE (check):	(11) WATER LEVEL: Completed w	
Rotary C Driven C	Depth at which water was first found	<u>35</u> <u>ft.</u>
Cable S Jetted D Domestic Municipal	Static level /O ft. below land a	surface. Date 8-/8-17
Dug Bored Irrigation Test Well Other I	Artesian pressure lbs. per squar	re inch. Date
CASING INSTALLED: Threaded D Welded \$ " Diam. from # 1 ft. to 52 ft. Gage 1250	(12) WELL LOG: Diameter of well Depth drilled - ケラー ft. Depth of comp	~~~~
1. Gage	· · · · · · · · · · · · · · · · · · ·	
PERFORATIONS: Perforated? Ves N No.	Formation: Describe color, texture, grain size and show thickness and nature of each stratu with at least one entry for each change of forma position of Static Water Level and indicate pri	im and aquifer penetrated,
Type of perforator used	MATERIAL	From To SWL
Size of perforations in. by in.	DirT	0 /
perforations from ft. to ft.	CLAY +Gravel	1 20
perforations from ft. to ft.	Cemented Grarel	20 57 10
ft. to ft.		
(7) SCREENS: Well screen installed?		
Manufacturer's Name		
Diam. Slot size	······································	· · · · ·
Diam Slot size Set from ft. to ft.		······································
(8) WELL TESTS: Drawdown is amount water level is lowered below static level		
Was a pump test made? MY Yes I No If yes, by whom? Drille, Y		
vield: <u>3</u> gal./min. with 40 ft. drawdown after 4 hrs.		
<u> </u>		
· · · · · · · · · · · · · · · · · · ·		····
Bailer test gal./min. with ft. drawdown after hrs.		
Artesian flow g.p.m.		
perature of water Depth artesian flow encountered ft.	Work started 8-17 1977 Complet	ed 8-19 1977
(y) CONSTRUCTION:	Date well drilling machine moved off of well	8-19 1977
Well seal-Material used <u>Cement</u>	Drilling Machine Operator's Certification:	· · · · · ·
Well sealed from land surface to	This well was constructed under my	direct supervision.
Diameter of well bore to bottom of seal $\frac{10}{10}$ in.	Materials used and information reported best knowledge and belief.	above are true to my
Diameter of well bore below seal		Date 8-20 1977
Number of sacks of cement used in well seal	[Signed] <u>(Drilling Machine Operator</u>)	C) C/
How was cement grout placed? Poured	Drilling Machine Operator's License No.	- 5.2.7
	Water Well Contractor's Certification:	-
	This well was drilled under my jurisd true to the best of my knowledge and bel	
Was a drive shoe used? 🕎 Yes 🗍 No Plugs	Name Im may are	Chrilling.
Did any strata contain unusable water? 🗌 Yes 🙀 No	(Person, firm or corporation)	(Type or print)
Type of water? depth of strata	Address Oper 875 Cord	aguttor
Method of sealing strata off	[Signed] 2mm may	-
Was well gravel packed? [] Yes 🔀 No Size of gravel:	(Water Well Cont	
Gravel placed from ft. to ft.	Contractor's License No	2-20-, 1977
(USE ADDITIONAL SE	IEETS IF NECESSARY)	SP*45656-119

STATE OF OREGON JUN - 1 19 WATER WELL REPORT (as required by ORS 537.765) WATER RESOURCE		(START CARD) $\#W$	41735		~
SALEN, CALC	11				
(1) OWNER: Well Number #/		OF WELL by legal			
Address 3800 Bennett Creek Rd.		SN or S. Range_3			
City Cottage Grove State OR Zip 97424	Section <u>27</u>	<u>NE</u>	¼ <u>SW</u>	1/4	_
(2) TYPE OF WORK:		08 LotBlock_			
Image: New Well Deepen Recondition X Main Abandon (3) DRILL METHOD:		of Well (or nearest address)			
Image: State of the state o		ATER LEVEL:	<u>ge Grove</u>		
□ Other		ft. below land surface.	Date	<u>e 4-3</u>	0
(4) PROPOSED USE:		e lb. per sq		e	
Domestic Community Industrial Irrigation	(11) WATER B	EARING ZONES:			
Image: Thermal Injection Other (5) BORE HOLE CONSTRUCTION:	Depth at which wat	er was first found <u>250</u>	\ T		
Special Construction approval Yes X No Depth of Completed Well 298 ft.					
Explosives used Yes XX No Type Amount	From	То	Estimated Flo		
HOLE SEAL Amount	250'	255'	3½ g	pm	-
Diameter From To Material From To sacks or pounds 10" 0 37' Cement 0 240' 3 yards					+
- 10 0 37 cement 0 240 5 yards	-				+
	(12) WELL LC)G:			
	-		ion		
How was seal placed: Method $\square A \square B \boxtimes C \square D \square E$		Manufat			Т
Backfill placed from ft. to ft Material	Topsoil	Material	From O	To 3!	+
Gravel placed from ft. to ft. Size of gravel	Gravel &	sand	31	291	T
(6) CASING/LINER:	Brown con	nglomerate	291	50'	
Diameter From To Gauge Steel Plastic Welded Threaded		een claystone		90'	
Casing:		aystone		100'	
		vstone	100		
		en claystone ystone		230	
Liner:		en claystone	235'		
	Basalt		260'	1	
Final location of shoe(s)	Blue, gro	<u>een claystone</u>	<u>270'</u>	298	+
Perforations Method		······································			+
Screens Type Material	_ _				T
Slot Tele/pipe				<u> </u>	
From To size Number Diameter size Casing Liner					
	•. •. • • •				┿
		······································		1	+
					1
	_			<u> </u>	1
(8) WELL TESTS: Minimum testing time is 1 hour		4 00 00 5			
Pump Bailer X Air Flowing	Date started	<u>4–28–92</u> Con Well Constructor Certific		0 <u>-92</u>	_
-	I certify that th	e work I performed on the	construction, alter	ration, or	: al
	ment of this well is used and information	in compliance with Oregon von reported above are true to	vell construction s o my best knowle	tandards.	. M bel
<u>3 ½</u> 277' 298' (1 hr.	- 11 - 1			Number _	
	Signed	a Mr		Number	
		ell Constructor Certification			
Temperature of Water Depth Artesian Flow Found	I accept respons	sibility for the construction,	alteration, or aban	Idonment	w
Was a water analysis done? Yes By whom not tested	formed on this well	during the construction dates a compliance with Oregon we	s reported above. A	All work	pei
Did any strata contain water not suitable for intended use?	is true to the best of	of my knowledge and belief.			
	I //	\sim	WWC	Number_	

IONITORING WELL RI s required by ORS 537.765 & OAR 694	0-240-093) <	MAY 18 1		Sta	rt Card #		0314 /	· · · · · · · · · · · · · · · · · · ·	
) OWNER/PROJECT:	WELL NO	<i>J</i> .	(0) 1	LOCATION		LL By leg	al descript	ion	
 Kris Woodward, KCW 	Properti	es WATER RESOUR	ESw	Location: Cou	nty	Lan			
ress P. O. Box 10666		SALEM, OR	GON	-			-		27
	Oregon	<u>zip 97440</u>	1 2. \$	<u>SE</u> 1/ Street address of			of above secti ow River		
TYPE OF WORK:		Decentricity				Cotta	ge Grove		97424
	epair _	Recondition Abandonment		Fax lot number o ATTACH MAP					· · ·
DRILLING METHOD									·
	otary Mud	Cable	(1)	STATIC WA 8' Ft. be			Date 4-2	20-93	-
Hollow Stem Auger O	ther		-	Artesian Pressur	elb	/sq. in.	Date	. 	
BORE HOLE CONSTRUC	TION								
Yes No Decial Standards	1 6 1. 4 1	(Not a well)		WATER BE Depth at which v			81		
pecial Standards 🗌 🔀 Dept	h of completed			From	To		ow Rate	SW	 /L
Vault		Land surface	-	8'	12'		>1 gpm		
$\sum_{ft.}$							- 89		
$\downarrow_{o} \prec$		Surface flush vault							
		Locking cap	·· .						
		Casing	(9)	WELL LOG		Ground elev	ation <u>635</u> '		
		diameterin.	(\mathcal{I})	Materi			From	То	SWL
	10X	material <u>––</u> Welded Threaded Glued							SWL
	1 m			Asphalt		C + 1 1	0	2"	
Seal	AD A	Liner diameter — in.		Crushed	<u>rock</u>	<u>EILL</u>	2"	10"	
ft. 0.000000000000000000000000000000000	h Sa	material		Brown s	andy a	raval	10"	10'	
$\downarrow o \prec \qquad \bigcirc \qquad$		Welded Threaded Glued		moist		Laver,	10	10	
-ft.) O					<u>•</u>				
	SN.	Well seal: Material Bentonite	<u> </u>	Silty c	lav ma	trix	10'	12'	
	1.0)	Amount 3/8" (200	<u>lb</u> s)		, w/col				
	10	Borehole diameter			6", w				
	1 ser	<u> </u>							
		Bentonite plug at least 2 ft. t	hick						
	₹() -								
Filter	\Box	Screen							
pack DO	$d\mathcal{D}$	material <u>–––</u> interval(s):				<u></u>			
	N K	From To							
	$\langle \mathcal{M} \rangle$	From <u> </u>			·				
	~ 100	Material			-	4/20/93	l	4/20/9	0.2
		Sizein.	,	Date started			-	4/20/	<u>,</u> ,
WELL TEST:			(un	bonded) Monitor [certify that the	r Well Cons work I perfo	brmed on the	construction,	alteration, or	
Pump Bailer	Air	Flowing Artesian	aba	ndonment of this	s well is in c	ompliance w	ith Oregon we	ell construction	on
Permeability	Yield	GPM_		idards. Material		monnation r	sponed above	are true to th	ie dest
Conductivity	PH			Ū.				WC Number	
		ian flow foundft.		ned				te	
Was water analysis done? XX Yes		1		nded) Monitor V I accept responsi				r abandonme	ent
By whom? <u>Pacific Nort</u> Depth of strata to be analyzed. From			wo	rk performed on	this well-du	ring the cons	truction dates	reported abo	ve. All
Remarks:			ŴO	rk performed du idards. This rep	ing this tim	e is in compl	iance with Ore	egon well con and belief	nstruction
		····	ાતા	indias. Interop	1 L-		M	WC Number	10200

Area of Interest (AOI) Spoil Area Area of Interest (AOI) Stony Spot Soils Very Stony Spot Soil Map Unit Polygons Wet Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soil Map Unit LinesOtherSoil Map Unit PointsSpecial Line FeaturesSpecial Point FeaturesWater FeaturesImage: Borrow PitImage: Streams and CanalsImage: Clay SpotStreams and CanalsImage: Clay SpotInterstate HighwaysImage: Clay SpotImage: Streams and CanalsImage: Clay Spot <t< th=""><th> Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 30, 2019—Nov 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor </th></t<>	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 30, 2019—Nov 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
24	Chapman loam	6.0	4.9%
79	McBee silty clay loam	9.4	7.7%
89D Nekia silty clay loam, 12 to 20 percent slopes		0.6	0.5%
118	Salem gravelly silt loam	92.7	75.8%
119	Salem-Urban land complex	13.0	10.6%
2205A	Conser silty clay loam, 0 to 3 percent slopes	0.7	0.5%
Totals for Area of Interest		122.4	100.0%

Lane County Area, Oregon

79—McBee silty clay loam

Map Unit Setting

National map unit symbol: 238x Elevation: 100 to 2,500 feet Mean annual precipitation: 36 to 60 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 150 to 210 days Farmland classification: Prime farmland if protected from flooding or not frequently flooded during the growing season

Map Unit Composition

Mcbee and similar soils: 85 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mcbee

Setting

Landform: Flood plains Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Recent mixed alluvium

Typical profile

H1 - 0 to 24 inches: silty clay loam H2 - 24 to 41 inches: silt loam H3 - 41 to 62 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 24 to 36 inches Frequency of flooding: FrequentNone Frequency of ponding: None Available water supply, 0 to 60 inches: High (about 10.9 inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C Ecological site: F002XC003OR - Low Floodplain Group Forage suitability group: Moderately Well Drained < 15% Slopes (G002XY004OR)

USDA

Other vegetative classification: Moderately Well Drained < 15% Slopes (G002XY004OR) Hydric soil rating: No

Minor Components

Wapato

Percent of map unit: 3 percent Landform: Flood plains Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

Lane County Area, Oregon

118—Salem gravelly silt loam

Map Unit Setting

National map unit symbol: 2340 Elevation: 300 to 800 feet Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 165 to 210 days Farmland classification: All areas are prime farmland

Map Unit Composition

Salem and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Salem

Setting

Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Gravelly mixed alluvium

Typical profile

H1 - 0 to 7 inches: gravelly silt loam
H2 - 7 to 26 inches: gravelly clay loam
H3 - 26 to 60 inches: very gravelly sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: R002XC006OR - Stream Terrace Group Forage suitability group: Well drained < 15% Slopes (G002XY002OR) Other vegetative classification: Well drained < 15% Slopes (G002XY002OR)

USDA

Hydric soil rating: No

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

Lane County Area, Oregon

119—Salem-Urban land complex

Map Unit Setting

National map unit symbol: 2341 Elevation: 300 to 800 feet Mean annual precipitation: 40 to 60 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 165 to 210 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Salem and similar soils: 50 percent Urban land: 40 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Salem

Setting

Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Gravelly mixed alluvium

Typical profile

H1 - 0 to 7 inches: gravelly silt loam
H2 - 7 to 26 inches: gravelly clay loam
H3 - 26 to 60 inches: very gravelly sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: R002XC006OR - Stream Terrace Group Forage suitability group: Well drained < 15% Slopes (G002XY002OR) Other vegetative classification: Well drained < 15% Slopes (G002XY002OR)

USDA

Hydric soil rating: No

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydric soil rating: No

Data Source Information

Soil Survey Area: Lane County Area, Oregon Survey Area Data: Version 19, Oct 27, 2021

APPENDIX B:

Recommended Earthwork Specifications

GEOTECHNICAL SPECIFICATIONS

General Earthwork

- 1. All areas where structural fills, fill slopes, structures, or roadways are to be constructed shall be stripped of organic topsoil and cleared of surface and subsurface deleterious material, including but limited to vegetation, roots, or other organic material, undocumented fill, construction debris, soft or unsuitable soils as directed by the Geotechnical Engineer of Record. These materials shall be removed from the site or stockpiled in a designated location for reuse in landscape areas if suitable for that purpose. Existing utilities and structures that are not to be used as part of the project design or by neighboring facilities, shall be removed or properly abandoned, and the associated debris removed from the site.
- 2. Upon completion of site stripping and clearing, the exposed soil and/or rock shall be observed by the Geotechnical Engineer of Record or a designated representative to assess the subgrade condition for the intended overlying use. Pits, depressions, or holes created by the removal of root wads, utilities, structures, or deleterious material shall be properly cleared of loose material, benched and backfilled with fill material approved by the Geotechnical Engineer of Record compacted to the project specifications.
- 3. In structural fill areas, the subgrade soil shall be scarified to a depth of 4-inches, if soil fill is used, moisture conditioned to within 2% of the materials optimum moisture for compaction, and blended with the first lift of fill material. The fill placement and compaction equipment shall be appropriate for fill material type, required degree of blending, and uncompacted lift thickness. Assuming proper equipment selection, the total uncompacted thickness of the scarified subgrade and first fill lift shall not exceed 8-inches, subsequent lifts of uncompacted fill shall not exceed 8-inches unless otherwise approved by the Geotechnical Engineer of Record. The uncompacted lift thickness shall be assessed based on the type of compaction equipment used and the results of initial compaction testing. Fine-grain soil fill is generally most effectively compacted using a kneading style compactor, such as a sheeps-foot roller; granular materials are more effectively compacted using a smooth, vibratory roller or impact style compactor.
- 4. All structural soil fill shall be well blended, moisture conditioned to within 2% of the material's optimum moisture content for compaction and compacted to at least 90% of the material's maximum dry density as determined by ASTM Method D-1557, or an equivalent method. Soil fill shall not contain more than 10% rock material and no solid material over 3-inches in diameter unless approved by the Geotechnical Engineer of Record. Rocks shall be evenly distributed throughout each lift of fill that they are contained within and shall not be clumped together in such a way that voids can occur.
- 5. All structural granular fill shall be well blended, moisture conditioned at or up to 3% above of the material's optimum moisture content for compaction and compacted to at least 90% of the material's maximum dry density as determined by ASTM Method D-1557, or an equivalent method. 95% relative compaction may be required for pavement base rock or in upper lifts of the granular structural fill where a sufficient thickness of the fill section allows for higher compaction percentages to be achieved. The granular fill shall not contain solid particles over 2-inches in diameter unless special density testing methods or proof-rolling is approved by the Geotechnical Engineer of Record. Granular fill is generally considered to be a crushed aggregate with a fracture surface of at least 70% and a maximum size not exceeding 1.5-inches in diameter, well-graded with less than 10%, by weight, passing the No. 200 Sieve.
- 6. Structural fill shall be field tested for compliance with project specifications for every 2-feet in vertical rise or 500 cy placed, whichever is less. In-place field density testing shall be performed by a competent individual, trained in the testing and placement of soil and aggregate fill placement, using either ASTM Method D-1556/4959/4944 (Sand Cone), D-6938 (Nuclear Densometer), or D-2937/4959/4944 (Drive Cylinder). Should the fill materials not be suitable for testing by the above methods, then observation of placement, compaction and proof-rolling with a loaded 10 cy dump-truck, or equivalent ground pressure equipment, by a trained individual may be used to assess and document the compliance with structural fill specifications.

Utility Excavations

- 1. Utility excavations are to be excavated to the design depth for bedding and placement and shall not be over-excavated. Trench widths shall only be of sufficient width to allow placement and proper construction of the utility and backfill of the trench.
- 2. Backfilling of a utility trench will be dependent on its location, use, depth, and utility line material type. Trenches that are required to meet structural fill specifications, such as those under or near buildings, or within pavement areas, shall have granular material strategically compacted to at least the spring-line of the utility conduit to mitigate pipeline movement and deformation. The initial lift thickness of backfill overlying the pipeline will be dependent on the pipeline material, type of backfill, and the compaction equipment, so as not to cause deflection or deformation of the pipeline. Trench backfill shall conform to the General Earthwork specifications for placement, compaction, and testing of structural fill.

Geotextiles

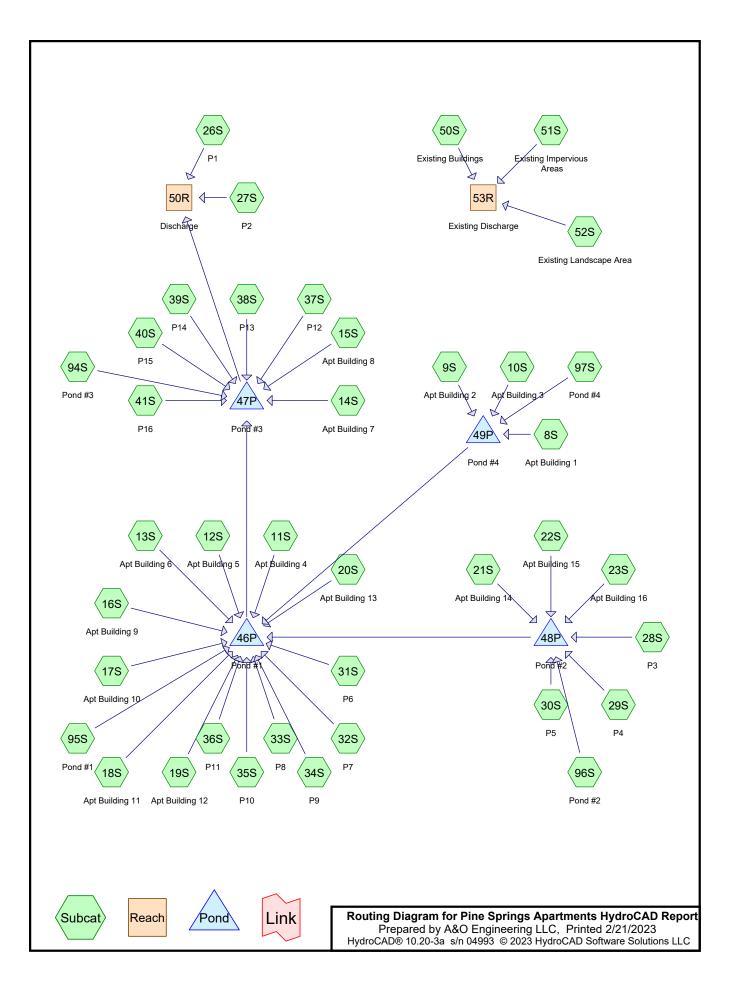
1. All geotextiles shall be resistant to ultraviolet degradation, and to biological and chemical environments normally found in soils. Geotextiles shall be stored so that they are not in direct sunlight or exposed to chemical products. The use of a geotextile shall be specified and shall meet the following specification for each use.

Subgrade/Aggregate Separation

Woven or nonwoven fabric conforming to the following physical properties:

•	Minimum grab tensile strength	ASTM Method D-4632	180 lb
•	Minimum puncture strength (CBR)	ASTM Method D-6241	371 lb
•	Elongation	ASTM Method D-4632	15%
•	Maximum apparent opening size	ASTM Method D-4751	No. 40
•	Minimum permittivity	ASTM Method D-4491	$0.05 \mathrm{S}^{-1}$

Drainage Filtration


Woven fabric conforming to the following physical properties:

•	Minimum grab tensile strength	ASTM Method D-4632	110 lb
•	Minimum puncture strength (CBR)	ASTM Method D-6241	220 lb
•	Elongation	ASTM Method D-4632	50%
•	Maximum apparent opening size	ASTM Method D-4751	No. 40
•	Minimum permittivity	ASTM Method D-4491	0.5 s ⁻¹

Geogrid Base Reinforcement

Extruded biaxially or triaxially oriented polypropylene conforming to the following physical properties:

•	Peak tensile strength lb/ft	ASTM Method D-6637	925
•	Tensile strength at 2% strain lb/ft	ASTM Method D-6637	300
•	Tensile strength at 5% strain lb/ft	ASTM Method D-6637	600
•	Flexural Rigidity Effective Opening Size rock size	ASTM Method D-1388 ASTM Method D-4751	250,000 mg-cm 1.5x

Page 2

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC Printed 2/21/2023

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	25-Year	Type IA 24-hr		Default	24.00	1	5.18	2
2	Destination	Type IA 24-hr		Default	24.00	1	3.60	2
3	Pollution Reduction	Type IA 24-hr		Default	24.00	1	1.40	2

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Printed 2/21/2023 Page 3

Area Listing (selected nodes)

A	Area CN	Description
(ac	res)	(subcatchment-numbers)
1.	016 98	Impervious Roof & Adjacent Sidewalk (50S)
2.	658 98	Impervious Surface (26S, 27S, 28S, 29S, 30S, 31S, 32S, 33S, 34S, 35S, 36S,
		37S, 38S, 39S, 40S, 41S)
1.	582 98	Impervious pavement and sidewalk (51S)
1.	978 98	Unconnected roofs, HSG B (8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S,
		18S, 19S, 20S, 21S, 22S, 23S)
0.	306 98	Water Surface, HSG B (94S, 95S, 96S, 97S)
1.	897 65	Woods/grass comb., Fair, HSG B (52S)
9.	.436 91	TOTAL AREA

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Printed 2/21/2023 Page 4

Soil Listing (selected nodes)

Area	Soil	Subcatchment
 (acres)	Group	Numbers
0.000	HSG A	
4.181	HSG B	8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S, 18S, 19S, 20S, 21S, 22S,
		23S, 52S, 94S, 95S, 96S, 97S
0.000	HSG C	
0.000	HSG D	
5.256	Other	26S, 27S, 28S, 29S, 30S, 31S, 32S, 33S, 34S, 35S, 36S, 37S, 38S, 39S, 40S,
		41S, 50S, 51S
9.436		TOTAL AREA

Pine Springs Apartments - Village Green

Pine Springs Apartments HydroCAD Report

Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC Printed 2/21/2023 Page 5

HSG-A HSG-B HSG-C HSG-D Other Total Ground Subcatch (acres) Cover Numbers (acres) (acres) (acres) (acres) (acres) 0.000 0.000 0.000 0.000 1.016 1.016 Impervious Roof & Adjacent Sidewalk 0.000 0.000 0.000 0.000 2.658 2.658 Impervious Surface 0.000 0.000 0.000 0.000 1.582 1.582 Impervious pavement and sidewalk Unconnected roofs 0.000 1.978 0.000 0.000 0.000 1.978 0.306 0.000 0.000 0.000 0.000 0.306 Water Surface 0.000 1.897 0.000 0.000 0.000 1.897 Woods/grass comb., Fair 0.000 4.181 0.000 0.000 9.436 TOTAL AREA 5.256

Ground Covers (selected nodes)

Pine Springs Apartments - Village Green

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC Printed 2/21/2023 Page 6

Pipe Listing (selected nodes)

 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
 1	46P	633.60	632.00	400.0	0.0040	0.010	0.0	12.0	0.0
2	47P	633.92	632.00	480.0	0.0040	0.010	0.0	10.0	0.0
3	48P	633.60	632.00	400.0	0.0040	0.010	0.0	12.0	0.0
4	49P	636.00	634.00	125.0	0.0160	0.010	0.0	8.0	0.0

Notes Listing (selected nodes)

 Line#	Node Number	Notes
 1	26S	Includes area from common drive aisle that serves Village Green Hotel.
2	27S	Includes drive aisle that serves Village Green Hotel.
3	50S	Includes the roofs from existing buildings 1-8 and some adjacent sidewalks for areas within master plan (apartments). See existing drainage basin map for corresponding areas.
4	51S	Includes existing impervious pavement within the new master plan development area (apartments). See existing drainage basin map for corresponding areas.

Pine Springs Apartments HydroCAD ReportPine Springs Apartments - Village Green
Type IA 24-hrType IA 24-hr25-Year Rainfall=5.18"Prepared by A&O Engineering LLCPrinted 2/21/2023Printed 2/21/2023HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLCPage 8

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment8S: Apt Building 1	Runoff Area=2,073 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.06 cfs 0.020 af
Subcatchment9S: Apt Building 2	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment10S: Apt Building 3	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment11S: Apt Building 4	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment12S: Apt Building 5	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment13S: Apt Building 6	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment14S: Apt Building 7	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment15S: Apt Building 8	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment16S: Apt Building 9	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment17S: Apt Building 10	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment18S: Apt Building 11	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment19S: Apt Building 12	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment20S: Apt Building 13	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment21S: Apt Building 14	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment22S: Apt Building 15	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment23S: Apt Building 16	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af

Pine Springs Apartments HydroCAD Report	Pine Springs Apartments - Village Green <i>Type IA 24-hr 25-Year Rainfall=5.18</i> "
Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solu	utions LLC Printed 2/21/2023

Subcatchment26S: P1	Runoff Area=5,680 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.054 af
Subcatchment27S: P2	Runoff Area=4,460 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.13 cfs 0.042 af
Subcatchment28S: P3	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.32 cfs 0.106 af
Subcatchment29S: P4	Runoff Area=7,128 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.20 cfs 0.067 af
Subcatchment30S: P5	Runoff Area=11,417 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.32 cfs 0.108 af
Subcatchment31S: P6	Runoff Area=7,570 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.21 cfs 0.072 af
Subcatchment32S: P7	Runoff Area=7,142 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.20 cfs 0.068 af
Subcatchment33S: P8	Runoff Area=7,675 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.22 cfs 0.073 af
Subcatchment34S: P9	Runoff Area=6,421 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.18 cfs 0.061 af
Subcatchment35S: P10	Runoff Area=6,146 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.17 cfs 0.058 af
Subcatchment36S: P11	Runoff Area=7,429 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.21 cfs 0.070 af
Subcatchment37S: P12	Runoff Area=9,368 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.26 cfs 0.089 af
Subcatchment38S: P13	Runoff Area=5,595 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.053 af
Subcatchment39S: P14	Runoff Area=4,779 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.13 cfs 0.045 af
Subcatchment40S: P15	Runoff Area=4,741 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.13 cfs 0.045 af
Subcatchment41S: P16	Runoff Area=8,967 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.25 cfs 0.085 af
Subcatchment50S: Existing Buildings	Runoff Area=44,242 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=1.24 cfs 0.418 af

Pine Springs Apartments HydroCAD Report	Pine Springs Apartments - Village Green <i>Type IA 24-hr 25-Year Rainfall=5.18</i> "
Prepared by A&O Engineering LLC	Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solution	ons LLC Page 10

Subcatchment51S: Exis	sting Impervious	Runoff Area=68,924 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=1.94 cfs 0.652 af
Subcatchment52S: Exis	sting Landscape	Runoff Area=82,633 sf 0.00% Impervious Runoff Depth=1.77" Tc=60.0 min CN=65/0 Runoff=0.31 cfs 0.281 af
Subcatchment94S: Pon	d #3	Runoff Area=4,349 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.12 cfs 0.041 af
Subcatchment95S: Pon	d #1	Runoff Area=4,554 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.13 cfs 0.043 af
Subcatchment96S: Pon	d #2	Runoff Area=2,830 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.08 cfs 0.027 af
Subcatchment97S: Pon	d #4	Runoff Area=1,585 sf 100.00% Impervious Runoff Depth=4.94" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.015 af
Reach 50R: Discharge		Inflow=2.28 cfs 0.657 af Outflow=2.28 cfs 0.657 af
Reach 53R: Existing Dis	charge	Inflow=3.40 cfs 1.351 af Outflow=3.40 cfs 1.351 af
Pond 46P: Pond #1	Discarded=0.24 c	Peak Elev=636.72' Storage=10,201 cf Inflow=3.73 cfs 1.032 af fs 0.471 af Primary=1.75 cfs 0.561 af Outflow=1.99 cfs 1.032 af
Pond 47P: Pond #3	Discarded=0.22 c	Peak Elev=635.86' Storage=6,678 cf Inflow=2.51 cfs 1.024 af fs 0.464 af Primary=2.11 cfs 0.561 af Outflow=2.33 cfs 1.025 af
Pond 48P: Pond #2	Discarded=0.14 c	Peak Elev=636.78' Storage=4,774 cf Inflow=1.39 cfs 0.468 af fs 0.311 af Primary=1.19 cfs 0.156 af Outflow=1.33 cfs 0.468 af
Pond 49P: Pond #4		Peak Elev=637.07' Storage=1,075 cf Inflow=0.42 cfs 0.141 af fs 0.133 af Primary=0.14 cfs 0.008 af Outflow=0.24 cfs 0.141 af
Total Ru	inoff Area = 9.436	ac Runoff Volume = 3.386 af Average Runoff Depth = 4.31" 20.10% Pervious = 1.897 ac 79.90% Impervious = 7.539 ac

Summary for Subcatchment 8S: Apt Building 1

[49] Hint: Tc<2dt may require smaller dt

0.005

6 8

10 12 14 16 18 20

Runoff	=	0.06 cfs @	7.89 hrs,	Volume=
Routed	to Po	ond 49P : Pond #	4 4	

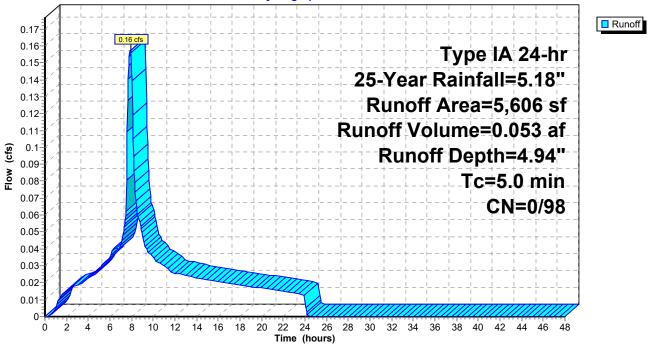
0.020 af, Depth= 4.94"

22 24 26 28 30 32 34 36 38 40 42 44 46 48

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

Area (sf) C	CN Description		
2,073	98 Unconnected roofs, HS	SG B	
2,073	98 100.00% Impervious A	Area	
Tc Length (min) (feet)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)	Description	
5.0		Direct Entry,	
		ent 8S: Apt Building 1	
	Hydro	ograph	
0.065			Runoff
0.06			
0.055		Type IA 24-hr	
0.05		25-Year Rainfall=5.18"	
0.045		Runoff Area=2,073 sf	
0.04		Runoff Volume=0.020 af	
(s) 0.035		Runoff Depth=4.94"	
S 0.035		Tc=5.0 min	
0.025		CN=0/98	
0.02			
0.015			
0.01			

Time (hours)


Summary for Subcatchment 9S: Apt Building 2

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pond	49P : Pond #	4	

0.053 af, Depth= 4.94"

A	Area (sf) CN Description								
	5,606 98 Unconnected roofs, HSG B								
	5,606 98 100.00% Impervious Area								
Tc _(min)									
5.0	5.0 Direct Entry,								
	Subcatchment 9S: Apt Building 2								
Hydrograph									

Summary for Subcatchment 10S: Apt Building 3

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to F	ond 49P : Pond #	‡ 4	

0.053 af, Depth= 4.94"

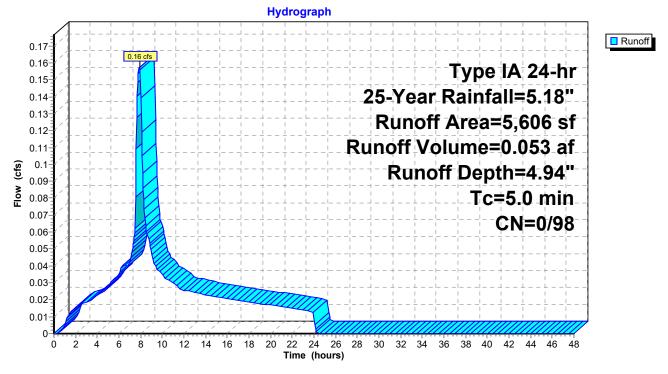
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description					
	5,606	606 98 Unconnected roofs, HSG B						
	5,606	606 98 100.00% Impervious Area						
Tc _(min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description			
5.0					Direct Entry,			
	Cubestshment 10C: Ant Duilding 2							

Subcatchment 10S: Apt Building 3 Hydrograph Runoff 0.17 0.16 cfs 0.16 Type IA 24-hr 0.15 25-Year Rainfall=5.18" 0.14 0.13 Runoff Area=5,606 sf 0.12 Runoff Volume=0.053 af 0.11 (cfs) 0.1 Runoff Depth=4.94" 0.09 Flow Tc=5.0 min 0.08 0.07 CN=0/98 0.06 0.05 0.04 0.03 0.02 0.01 0 0 ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Subcatchment 11S: Apt Building 4

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.053 af, Depth= 4.94"

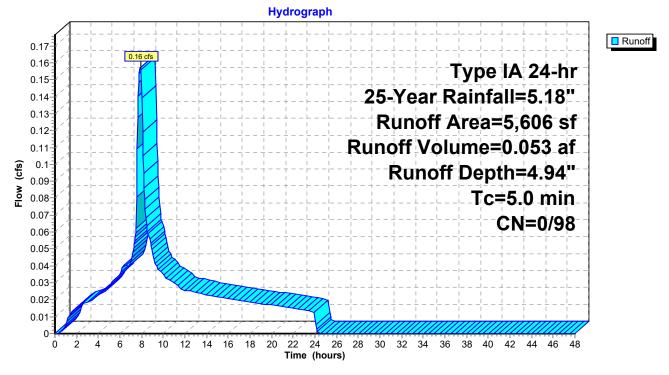
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	6 98 Unconnected roofs, HSG B					
	5,606	06 98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 11S: Apt Building 4

Summary for Subcatchment 12S: Apt Building 5

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.053 af, Depth= 4.94"

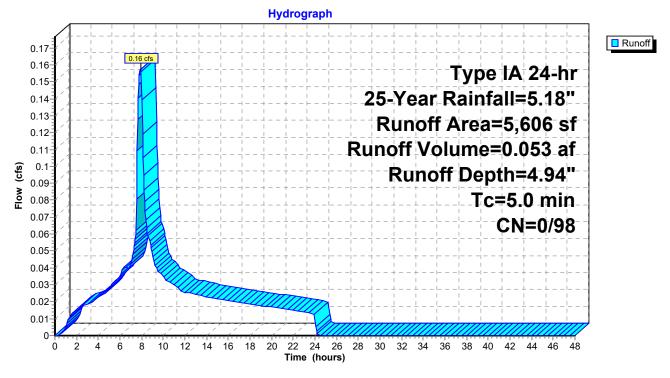
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	506 98 Unconnected roofs, HSG B					
	5,606	6 98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description		
5.0					Direct Entry,		
	Orch a stalk was wet 400s. A wet Devilation of E						

Subcatchment 12S: Apt Building 5

Summary for Subcatchment 13S: Apt Building 6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.053 af, Depth= 4.94"

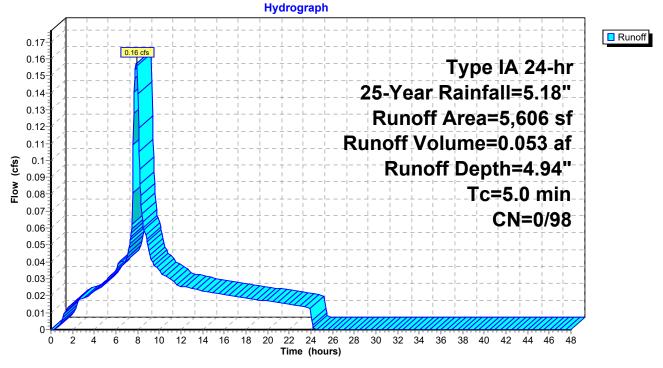
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	98	08 Unconnected roofs, HSG B				
	5,606	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 13S: Apt Building 6

Summary for Subcatchment 14S: Apt Building 7

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to P	ond 47P : Pond #	3	

0.053 af, Depth= 4.94"

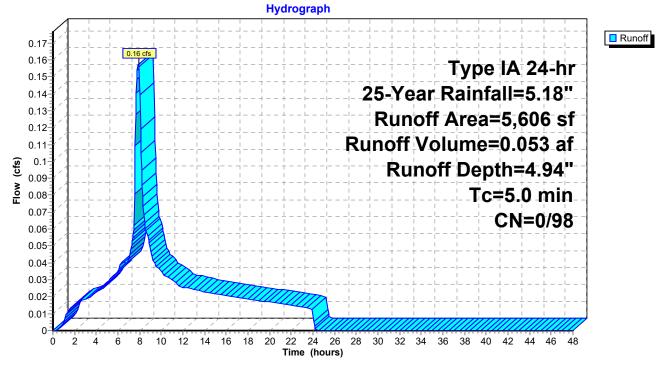
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	606 98 Unconnected roofs, HSG B					
	5,606	06 98 100.00% Impervious Area					
Tc _(min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		
	Cube stabus sut 14C: Aut Duilding 7						

Subcatchment 14S: Apt Building 7

Summary for Subcatchment 15S: Apt Building 8

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pond	d 47P : Pond #	3	

0.053 af, Depth= 4.94"

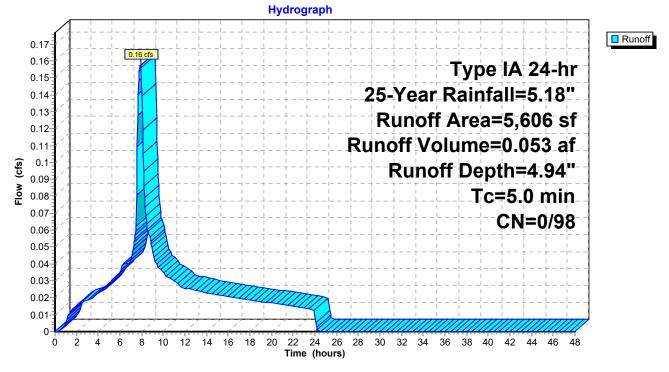
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	606 98 Unconnected roofs, HSG B					
	5,606	06 98 100.00% Impervious Area					
Tc _(min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		
Cubectobecont 450, Ant Duilding 0							

Subcatchment 15S: Apt Building 8

Summary for Subcatchment 16S: Apt Building 9

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Por	nd 46P : Pond #	#1	

0.053 af, Depth= 4.94"

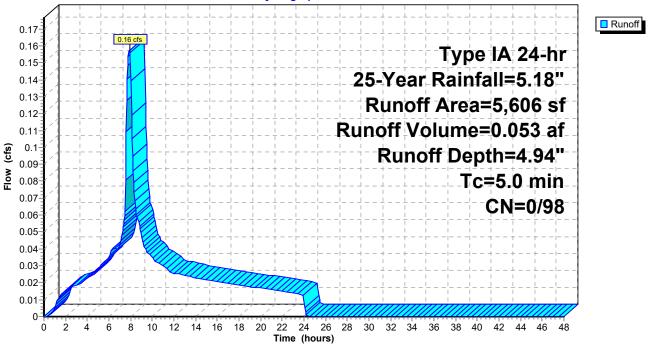
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	,606 98 Unconnected roofs, HSG B					
	5,606	,606 98 100.00% Impervious Area					
Tc _(min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		
	Cubectebreent 400, Ant Duilding 0						

Subcatchment 16S: Apt Building 9

Summary for Subcatchment 17S: Apt Building 10

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.053 af, Depth= 4.94"

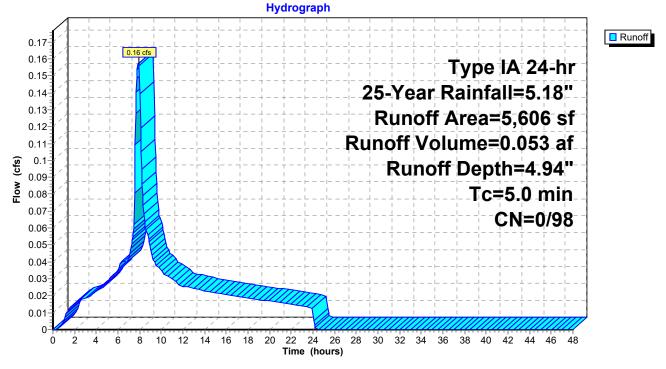
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	606 98 Unconnected roofs, HSG B					
	5,606	,606 98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		
	Outperfolgement 470, Aut Duilding 40						

Subcatchment 17S: Apt Building 10 Hydrograph

Summary for Subcatchment 18S: Apt Building 11

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pond	46P : Pond #	±1	

0.053 af, Depth= 4.94"

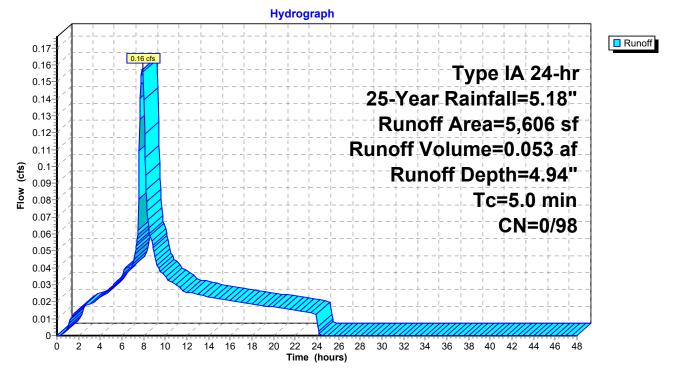
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	5,606 98 Unconnected roofs, HSG B					
	5,606	5,606 98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 18S: Apt Building 11

Summary for Subcatchment 19S: Apt Building 12

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.053 af, Depth= 4.94"

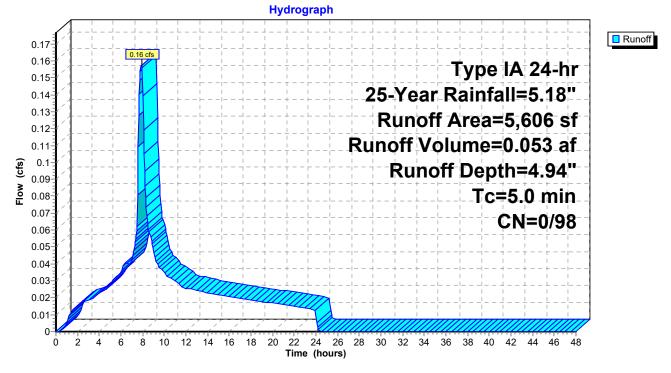
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN Description				
	5,606	506 98 Unconnected roofs, HSG B				
	5,606	6 98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)				
5.0		Direct Entry,				

Subcatchment 19S: Apt Building 12

Summary for Subcatchment 20S: Apt Building 13

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Por	nd 46P : Pond #	#1	

0.053 af, Depth= 4.94"

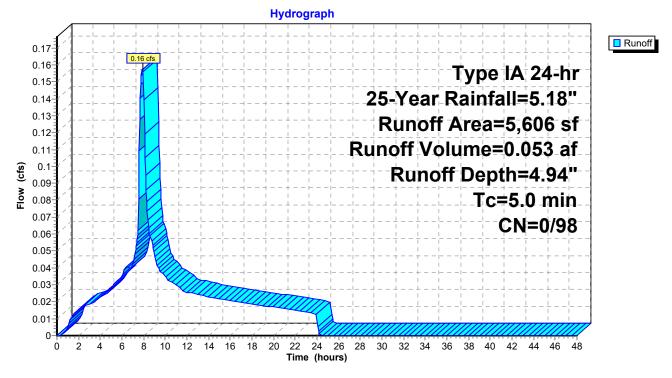
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description				
	5,606	,606 98 Unconnected roofs, HSG B					
	5,606	606 98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 20S: Apt Building 13

Summary for Subcatchment 21S: Apt Building 14

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Ponc	1 48P : Pond #	\$2	

0.053 af, Depth= 4.94"

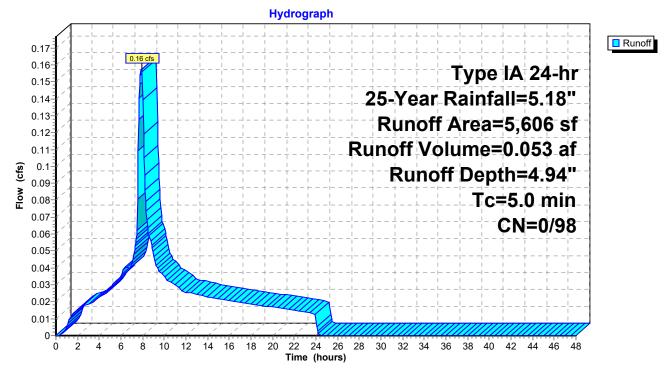
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description			
	5,606	98	3 Unconnected roofs, HSG B			
	5,606	98	100.00% In	npervious A	vrea	
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description	
5.0					Direct Entry,	

Subcatchment 21S: Apt Building 14

Summary for Subcatchment 22S: Apt Building 15

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pon	d 48P : Pond #	ŧ2	

0.053 af, Depth= 4.94"

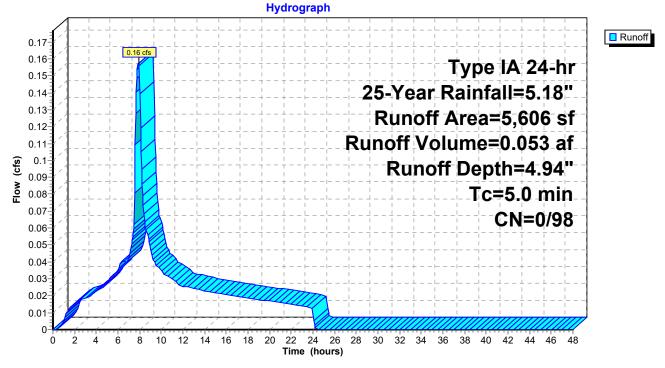
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

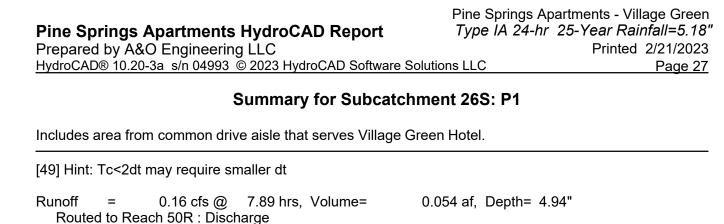
A	rea (sf)	CN	Description		
	5,606	98	Unconnecte	ed roofs, HS	SG B
	5,606	98	100.00% In	npervious A	vrea
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description
5.0					Direct Entry,
			<u> </u>		

Subcatchment 22S: Apt Building 15

Summary for Subcatchment 23S: Apt Building 16

[49] Hint: Tc<2dt may require smaller dt

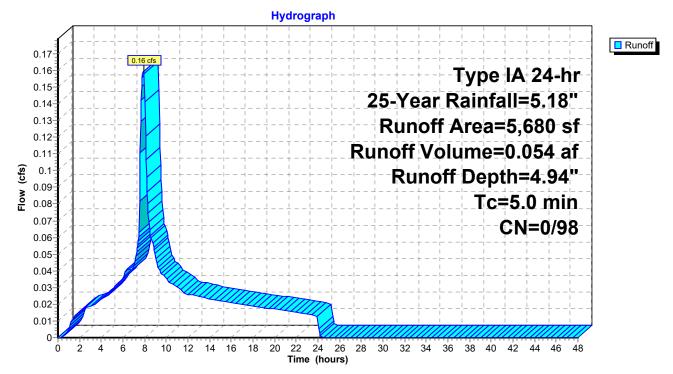

Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Pon	d 48P : Pond #	ŧ2	


0.053 af, Depth= 4.94"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description		
	5,606	98	Unconnecte	ed roofs, H	SG B
	5,606	98	100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slop (ft/fl	e Velocity) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,
			. .		

Subcatchment 23S: Apt Building 16



Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

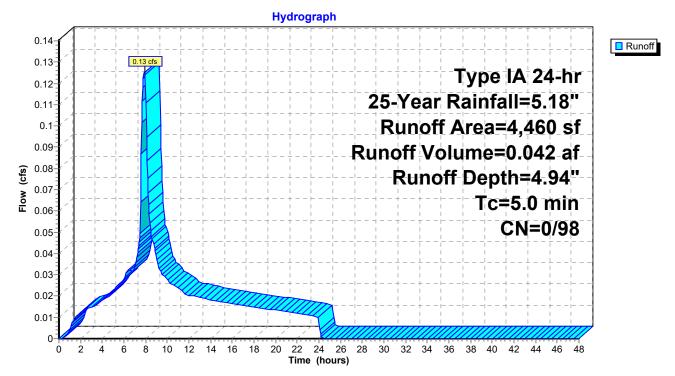
	Ai	rea (sf)	CN	Description		
*		5,680	98	Impervious	Surface	
		5,680	98	100.00% In	npervious A	Area
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 26S: P1

0.042 af, Depth= 4.94"

Summary for Subcatchment 27S: P2

Includes drive aisle that serves Village Green Hotel.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.13 cfs @ 7.89 hrs, Volume= Routed to Reach 50R : Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

A	rea (sf)	CN	Description		
*	4,460	98	Impervious	Surface	
	4,460	98	100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 27S: P2

Summary for Subcatchment 28S: P3

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.32 cfs @	7.89 hrs,	Volume=
Routed	to F	ond 48P : Pond #	[±] 2	

0.106 af, Depth= 4.94"

	<u>11,250</u> 11,250		mpervious 100.00% In	npervious /	Area							
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	ption						
5.0	(1)	(1211)	(1122)		Direct	Entry,						
				Subca	tchme	nt 28S	: P3					
				Hydro	ograph	1 1 1		1 1	1	1	· · · · · · · · · · · · · · · · · · ·	
0.34							<u> </u>	 		⊥ ⊥		Runof
0.32		0.32 cfs						Tvi	pe IA	24	1-hr	
0.3- 0.28-						25-`	Year		nfall=	+	+	
0.26						i i i		i î	=11,	1	i i i	
0.24 0.22						Runo				<u> </u>		
0.2 0.18 0.16									epth=			
0.16				+ + - 			+ +		「c=5	.0 r	nin	
0.14 0.12								, , 	-CN	1=0	/98	
0.12	/1			+ -		;+	+		-i	+	T	
0.08							+	 	- +	i +	i i + I I	
0.06 0.04							 	 		+ 		
					4					1		

Summary for Subcatchment 29S: P4

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.20 cfs @	7.89 hrs,	Volume=
Routed	to Por	nd 48P : Pond #	2	

0.067 af, Depth= 4.94"

	7,128	98 1	00.00% Ir	npervious A	Area					
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	on				
5.0		(1011)	(10300)	(013)	Direct Er	try,				
				Subca	tchment	29S: P4	Ļ			
				Hydro	ograph					
0.22				$-\frac{1}{1} $	$-\frac{1}{1}$	$\frac{1}{1} \frac{1}{1} \frac{1}{1} - $	 - 		$\frac{1}{1} = -\frac{1}{1} =$	R uno
0.21	/	<mark>0.20 cfs</mark> -	- + + - - + + + -	+ + +		+ + + - $\frac{1}{1} \frac{1}{1} \frac{1}{1}$	-	ype IA	24-hr	
0.19	_ +			$-\frac{1}{1} - \frac{1}{1} - 1$		25-Yea		infall=		
0.17			· - + +			Runc	off Ai	rea=7,	128 sf	
0.15 0.14					R ι	inoff \	/olui	me=0.()67 af	
0.13 0.12 0.11 0.11						Rur	off [Depth=	4.94"	
							' '- - 	Tc=5.	0 min	
0.09						$\frac{1}{1} \frac{1}{1} \frac{1}{1}$	- 	CN	=0/98	
0.07						↓ ↓ ↓ . + + . 	- - 		⊥ ⊥ 	
0.05			U m				- -		$\overline{1} = -\overline{1} = -1 = -1$	
0.03 0.02						↓ ↓ ↓ . ↓ + + + + .	- -			

Summary for Subcatchment 30S: P5

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.32 cfs @	7.89 hrs,	Volume=
Routed	to Por	nd 48P : Pond #	2	

0.108 af, Depth= 4.94"

	11,417		100.00%																	
Tc min)	Length (feet)	Slope (ft/ft)			Cap	oacity (cfs)	De	escri	iptic	n										
5.0							Di	rect	: En	try,										
					S	ubca	itch	me	nt:	30S	5: F	° 5								
						Hydr	ogra	bh				1			1					
0.04		+				, , , , , , , , , , , , , , , , , , ,	·	 - 	 -	' 	' 	; +	, 	' - 	' — — - 	' ·	, +	; +		Runo
0.34 0.32		- 0.32 cfs	$\begin{array}{c} - + - + - + \\ 1 1 \\ - + - + - + \end{array}$	 		+ + -	·	- -	- -	+ +	+ +	+ +	 -	Ţ)	IΔ	24	1_k)	
0.3				 !	 		L _	 _	 	25-	Vc	 ar								
0.28 0.26							<u> </u>	_		Ru	ī — —	ī — —				ī — — ·	ī — —	ī — —		
0.24						 - - -		-	1	inc		1	1	1	1		1	1	· ·	
0.22 2 0.2						+ + - 		- 	Rυ	-			1							
0.18				 !			L _	 _l	 _	; Г	TU	+ 	711 - 	De		I	L	L		
0.16 0.14	, 			¦				-¦			 	 	 	I	1	1	1	mi	1	
0.14				i i				-i	-i		i		i 	 	i (CN	=()/9	8	
0.1						i i + + -	·	 	-	 	; ; ;	; +	 	 	 — — -	 ·	 +	; ; +	 	
0.08 0.06						+ + _ 	 	- 	- 	- 	+ 	+ 	 	 	 	 	+ 	↓ ↓ ↓		
0.04								>					 	 	 					
0.02		<u> </u>					<u> </u>	Ìπ	-	-	1	-	-	////	1	////		-		

Summary for Subcatchment 31S: P6

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.21 cfs @	7.89 hrs,	Volume=
Routed	to F	ond 46P : Pond #	#1	

0.072 af, Depth= 4.94"

A	vrea (sf)	CN	Descri	ption														
	7,570	98	Imperv	/ious	Surfa	ace												
	7,570	98	100.00)% In	nperv	ious A	rea											
Tc (min)	Length (feet)	Slop (ft/ft		ocity sec)	Cap	oacity (cfs)	De	scri	ptior	۱								
5.0							Dir	rect	Ent	ry,								
					Sı	ubca	tchr	ner	nt 3	1S:	P6							
						Hydro	grap	h										
0.23			+ + + +	 		$\dot{+}$ $ \dot{+}$ $-$ $\dot{-}$ $ \dot{+}$ $-$	 	 		+ - + -	- + - - + -	- -	·	+ - + -	- + - +	- + - +	- -	Runot
0.22 0.21		<mark>0.21 cfs</mark>		└ '_ - _ - 		$\frac{1}{1} \frac{1}{1} - $	- -	 		<u>+</u> - + -	- <u> </u> - - + -	- -	Гур	e I/	4 2	4-	hr -	
0.2 0.19 0.18	┋								- 2	5-Y	ea			fall				
0.18 0.17 0.16	┫╱╁╺╺┝╺╺┤			- · - · - ·		+ + -	 			Ru	no	ff /	rea	a=7	,57	'0 \$	sf	
0.15	j=´_+			 			- -	 	Ru	nof	fV	οlι	ime)=0	.07	'2 a	af	
(cl) 0.14 0.13 0.12 0.11	;					 ++- +-	-⊢	 		R	un	off	De	pth	=4	.94	l"	
0.11 0.1				! !	 		- L - F	 		<u> </u> - + -	- <u> </u> - - + -	- <u> </u>	- T	c=5	5.0	mi	n	
0.09 0.08	- / '					$\frac{1}{1} \frac{1}{1} - $	-	 		 -	$-\frac{1}{1}$ - $-\frac{1}{1}$ -	- -		C	N=	0/9	8	
0.07 0.06	= /			 - · - ·		$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} - \frac{1}{1$	- -	 		+ - <u>+</u> -	- + - - <u>+</u> -	- -			- + - <u>+</u>	- + - <u>-</u>		
0.05 0.04	╡╎┼╶╌┼╶┙					+ + _ + + _ + _ 	- -	 		+ - + -	- + - - + -	- -		+ - + -	- + - +	- + - +	- -	
0.03 0.02								 			- <u>+</u> -	- -			 _ +	- L - +	- ' - !	
0.01 0	= // / /	· · · · · · · · · · · · · · · · · · ·	·/	<u> </u>	/ /	· · · · · · · · · · · · · · · · · · ·					<u>////</u>	<u>////</u>			<u>////</u>	<u> </u>	і́Ш/	
	0 2 4	6 8	10 12	14 16	5 18	20 22 Tin	24 ne (ho		28	30 32	2 34	36	38	40 42	44	46	48	

Summary for Subcatchment 32S: P7

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.20 cfs @	7.89 hrs,	Volume=
Routed	to F	ond 46P : Pond #	±1	

0.068 af, Depth= 4.94"

A	rea (sf)		Description										
	7,142		Impervious										
	7,142	98	100.00% In	npervious A	rea								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descrip	otion							
5.0					Direct	Entry,	1						
				Subca	tchmen	t 325	6: P7	,					
				Hydro	ograph								
0.22-								· _ • _ L	¦ !			<mark> </mark>	Runof
0.21- 0.2-		0.20 cfs		+ +			+ + - + + -	· - T	ype	IA	24	-hr	
0.19- 0.18-			 <u> </u> - <u> </u> <u> </u> <u> </u> - <u> </u> <u> </u> - <u> </u>		- · - ·	25-	Yea	ır Ra	#_ L '				
0.17- 0.16-	3 /					+	+ + -	ff A		+	+ +		
0.15- 0.14-	- / / /					Runo	<u>+</u> <u>+</u> _	!-	!	4			
0.40					■ - 		+ + -	off		+	+		
≥ 0.11-									Tc	⊥			
≝ 0.1- 0.09-				+++++++++-			+	- - -	1	1	I I	1	
0.08- 0.07-	·				- <mark> </mark> <mark> </mark> -		$\frac{1}{1} \frac{1}{1} - \frac{1}{1}$	· - - -	¦	CΝ	=0	/98	
0.06-							 + + -			 +		 	
0.05- 0.04-			- Common		- . - .		T T - 	· - - · -	¦			 	
0.03- 0.02-			L L				+ + _ + + + -			⊥ ↓ +	L L +	 	
0.01-										-			
0-	0 2 4	6 8 1	10 12 14 10		24 26 21 10 (hours)	28 30	32 34	4 36	38 40	42	44	46 48	

Summary for Subcatchment 33S: P8

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.22 cfs @	7.89 hrs,	Volume=
Routed	to F	ond 46P : Pond #	±1	

0.073 af, Depth= 4.94"

	7,675 7,675		mpervious I00.00% Ir	npervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descripti	on			
5.0			· · ·		Direct E	ntry,			
				Subca	atchment	33S: P8	5		
				Hydı	ograph				_
0.24	· / ·	+-+- +- +-+-	- + + - - +	+ +	 				Runot
0.23 0.22 0.21	(/	0.22 cfs					Type	IA 24-hr	-
0.21 0.2- 0.19-	(25-Yea	ar Rainfa		-
0.18- 0.17-	(<u> </u>		<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>					7,675 sf	-
0.16 0.15			$ \frac{1}{1} \frac{1}{1} \frac{1}{1}$ $ +$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1}$			/olume=		-
(2 0.14 0.13	(- - -		 1	·	off Dept	+	-
(510) 0.13 0.12 0.11	/		- + - + - + - + - + - + - + - + - + - +	$\begin{array}{c} + + + + + +$	- $+$ $ +$ $+$ $ +$ $+$ $+$ $ +$ $+$ $+$ $ +$ $+$ $+$	+ + - + -		5.0 min	-
0.1- 0.09-					 			CN=0/98	-
0.08					! ! ! ! ! ! 		' ''		-
0.06 0.05 0.04	<pre>/ ↓ └</pre>								-
	{` <i>\</i> - <i>∥</i>								-
0.04 0.03 0.02									

Summary for Subcatchment 34S: P9

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.18 cfs @	7.89 hrs,	Volume=
Routed	to Pon	d 46P : Pond #	#1	

0.061 af, Depth= 4.94"

A	rea (sf)		Descriptio															
	6,421		Imperviou															
	6,421	98	100.00%	Imper	vious A	rea												
Tc (min)	Length (feet)	Slope (ft/ft)			pacity (cfs)	De	scrij	ption	ı									
5.0						Dir	ect	Ent	ry,									
				S	ubcat	tchr	ner	nt 3	4S:	P9								
					Hydro	grap	h											
0.2				 		- L - L			4 - 4 -	+ - + -	· _ · _	- -		↓ ↓ 		+ +	·	Runo
0.19 0.18		0.18 cfs] + + 	 	++-	- -		- 	+ -	+ -	· - · -	-i T-\/I	pe	ΙA	2/	 1_⊦		
0.17				 	· + + -				6 N			_	nfa					
0.16 0.15				 	· + -		ii	i i	-	1	1	ĩ	1	i i	-	-	1	
0.14	/				·								ea=					
0.13				 			 	Rui	not	ff \	/ol	um	le=	0.0)6′	1 a	af	
S 0.11									R	un	off	Đ	ept	h=	4	94		
(3) 0.11 0.1 0.09				' 		- L			4 -		· _ L		Гс=	=5.	0 r	ni	n	
0.08 0.07				 	· + + -	-			+ -	+ -		- 	- (CN	=0	/9	8	
0.07				 	· + + - · + + -	 		- 	+ - + -	+ - + -	 -	- -	- - +	Fr 	 	+ +	= 	
0.05 0.04				 	· + + -	-		 - 	+ -	+ - I	· -	-i i	 - +	 + + 	 	 + 	 	
0.04									+ - + -	+ - + -	· - · -	-i -i		1 — — 1 		+ 	 	
0.02 0.01		- $ +$ $ +$ $+$	·						+ -	 -		-				 		
0.01-		· · · · · · · · · · · · · · · · · · ·			····		Щ		////						///	///	Щ	
(0 2 4	68	10 12 14	16 18	20 22 Tim	24 ie (ho		28 3	30 3	32 34	4 36	38	40	42	44	46	48	

Summary for Subcatchment 35S: P10

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.17 cfs @	7.89 hrs,	Volume=
Routed	to Pond	46P : Pond #	<i>‡</i> 1	

0.058 af, Depth= 4.94"

	6,146	98 1	100.00% In	nperviou	s Ar	ea									
Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capac (cf		Descri	ption	1							
5.0						Direct	Enti	ry,							
				Subc	atc	hmer	nt 35	5S: P	1 0						
				Ну	drog	yraph									
0.19-				'' ''			-'	<u> </u> <u> </u>		- -	·' ·'	·	$\frac{1}{1}$		'
0.18- 0.17-		0.17 cfs						<u> </u>			ype	IΔ	2	4_ł	<u> </u>
0.16-					$\frac{1}{1}$		2	5-Ye	ar	1 1			i	1	
0.15- 0.14-				¦¦ ¦¦	$\frac{1}{1} = -$ $\frac{1}{1} = -$	'		Rur	T				T	ī — —	
0.13- 0.12-					$\frac{1}{1} = -$			noff	<u> </u>	<u>' '-</u>	'		<u></u>	L	
					$\frac{1}{1} = -$						Dep			1	
0.11- 0.1- 0.09-	[¦¦ ¦¦	$\frac{1}{1} = -$						_	=5.	ī — —	ī — —	
0.08- 0.07-					$\frac{1}{1}$			 				CN	<u> </u>	L	L
0.06-					$\overline{1}$ \overline			+					+ +		
0.05- 0.04-					$\frac{1}{1}$			+	+ +		·		$\frac{1}{T} = -$ $\frac{1}{T} = -$		
0.03-	1,1 1							 						 	
0.02-						<u> </u>	-ii -	' I	<u>+</u>	; ;- i	·¦		$\frac{i}{1} = -$	<u>+</u>	

Summary for Subcatchment 36S: P11

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.21 cfs @	7.89 hrs,	Volume=
Routed	to Pond	d 46P : Pond #	±1	

0.070 af, Depth= 4.94"

	7,429	98 1	100.00% In	npervious A	Area										
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Des	criptic	n								
5.0					Dire	ct En	try,								
				Subcat	chme	ent 3	6S:	P11							
				Hydro	graph							1			
0.23 0.22					- ' '- - - - - - -	' 	 + - + -	- <u>-</u> - + - <u>-</u>		' 			+ 		Runc
0.21 0.2				+ + -				- <u> </u>	T	ype	IA	24	1-h	r	
0.19				+ + -		¦ (25-Y	ear	r Ra	infa	all=	5.	18	HU	
0.17				 + 		 ,	Ru	nof	f Ai	rea:	=7,4	429	9 s	f	
0.10						Rι	inof	fV	olui	ne=	=0.()7() a	f	
						¦	R	unc	off [Dep	th=	:4 .	94	••	
0.13 0.12 0.11 0.11				+ 		 		- +		Tc	=5.	0 r	niı	n	
0.09						 	 	- ⊥		 	CN	=0)/9	B	
0.07				+ + -		¦ ·	, , , _ ,	- +				 	 		
0.00		+						- + I		 	 	 +	 + 		
0.04						 l 		 				 			
0.02					-			-							

Summary for Subcatchment 37S: P12

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.26 cfs @	7.89 hrs,	Volume=
Routed	to Po	ond 47P : Pond #	3	

0.089 af, Depth= 4.94"

A	rea (sf) 9,368		Descriptior Impervious													
	9,368	98	100.00% Ir	nperviou	s Ar	rea										
Tc (min)	Length (feet)	Slope (ft/ft)		Capac (cl		Descri	ptior	ו								
5.0						Direct	Ent	ry,								
				Subo	atc	hmen	t 37	7S:	P12							
				Ну	drog	graph										
0.28- 0.24- 0.22- 0.2- 0.18- 0.16- 0.14- 0.12- 0.14- 0.08- 0.04- 0.04- 0.04- 0.02-								Ru nof	no f V	r R ff A olu	air tre im De	oe L nfal a=9 pth c={ C	=5 ,3(.08 1=4 5.0	58 58 39 59	8" sf af 4"	
0-	0 2 4	6 8		6 18 20	22	24 26	28	30 3	2 34	36	38	40 4	2 44	46	48	

Summary for Subcatchment 38S: P13

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.16 cfs @	7.89 hrs,	Volume=
Routed	to Po	ond 47P : Pond #	3	

0.053 af, Depth= 4.94"

	<u>5,595</u> 5,595		mpervious 100.00% In	npervious A	Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Descript	on				
5.0					Direct E	ntry,				
				Subcat	chment	38S: P	13			
				Hydro	ograph					_
0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.19 0.09 0.09						Run unoff	Ty ear Rai off Are Volum noff D	nfall= ea=5,: ne=0.(595 sf 053 af	- Runof
							+ ± 	Tc=5.	0 min	_
0.07 0.06	1			$\begin{array}{c} - \frac{1}{1} - \frac{1}{1}$	$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$		$\frac{1}{1} -$		=0/98	
0.05 0.04										_
0.03										-
0.02 0.01						$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$	$\frac{1}{1}$ - $\frac{1}{1}$ - $\frac{1}{1}$ - $\frac{1}{1}$ - $\frac{1}{1}$	$-\frac{1}{1}$ $ \frac{1}{1}$ $ -$	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$	_

Summary for Subcatchment 39S: P14

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.13 cfs @	7.89 hrs,	Volume=
Routed	to Pond	47P : Pond #	3	

0.045 af, Depth= 4.94"

	4,779		Impervious 100.00% Ir			rea											
Tc min)	Length (feet)	Slope (ft/ft)			city cfs)	Desc	riptic	on									
5.0						Dire	ct Er	ntry,									
				Sub	cat	chme	ent 3	89S	: P	14							
				ł	lydro	graph											
0.15-					- +		!		 		!			- <u>+</u>	 		🗖 Runo
0.14		0.13 cfs			- +	-	!	 	 +	 +				- - -	 		
0.13	Í /			·	· - +	 - - -			 				e IA				
0.12	/			i i	i 	 - L L .		25-	Ye	ar	Ra	ain	fall	=5.	18	8''	
0.11	/ I I I / I −				 	 - -		R	un	of	FA	rea	=4	77	9-9	sf	
0.1	´					 - <u> </u> <u> </u>	Pı	1	1	1 1			=0.				
0.09				+ -	-+		4 N U		+	 -			_ +	- +	+		
0.08	/				· _ <u> </u>	- <mark> </mark>	¦		КU	no	TT	Del	oth	=4.	94		
0.07	, 				- +	 -	 	 	 	 		T (c=5	.0	mi	n	
0.06	}` _ +			·	· - +				, , T — — -				-6-1	V=()/9	8	
0.05	/ 				·		!	 	 		!.	! _		• 			
0.04	,				· - +	- - ·		, 	 + ·	 – –			- +	; ; +	; +	-	
0.03			Min		· _ <u>+</u>	- <mark> </mark>			 								
0.02		 +						 	 +	 			- +	- +	+	 	
0.01														-			

Summary for Subcatchment 40S: P15

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.13 cfs @	7.89 hrs,	Volume=
Routed	to Pone	d 47P : Pond #	3	

0.045 af, Depth= 4.94"

	<u>4,741</u> 4,741	98 98		<u>berv</u> 0.00					s Ai	rea													
Tc nin)	Length (feet)	Slop (ft/f	e ∖	√elo (ft/s	ocity	/		oaci (cf	ty		scri	ptio	'n										
5.0										Dir	ect	En	try,										
							Su	ıbc	ato	:hn	nen	nt 4	.0S	: P	15								
								Ну	drog	grap	h												
-				 	 		 	 	 +	 	 	 	 	 +	 +	 	 	 	 	 +	 	 -	Rur
0.14		0.13 cfs	+		 		 	 	 T	 	 - 	 	 	 	 	 	 	 			 	 	
0.13	/ 			 	ا ا			 	 		 	 	 <u> </u>	 					IA				-
0.12	<		i +	F	I			i +	i +	i ⊢ – –	 	2	25-	Υe	ar	R	air	fa	ill=	:5 .	18	8¦	-
0.11	/		 	 	 				 		 	 	R	un	of	f A	re	a=	4,	74	1- (sf	-
0.1				 - 	 			 	+	 	 	Ri			1	1	1	1	0.0	1	1	1	
0.09									+ +	 					+					+			
0.08			İ	<u> </u> 				<u> </u>	<u>+</u>				<u> </u>	τu		<u>/ </u> _ !	1	L 🗖 👘	th=	1	1	1	-
0.08	,			- 	 			+ 	+ 	 ⊢ − − 	 	 	 	 + 	+ 	 		C=	=5.	0-1	mi	n	-
0.00	/				 			+	+ + + +	 	 		·	 	$\frac{1}{1}$	 			ÇN	=0)/9	8	
0.00	/			L I	 				1 – – !	L	 	 	1 	1 	⊥ 	 	 	. 	1 	1	L	- ! !	
0.04					 !		 	- - -	- + -		; 	i !	; !	- - - -	, T I			- 	- 	T	, 	-i	
0.02						\square				L 	' 	' 	 	 			' 	 		1 	1 	- ! 	-
0.01			+ +	- 	 					4		 	+ 	+	+ 	 	 	— — I	+	+ 	+ 	- 	
0-			· · · · · ·	- <u></u>	- <u></u>						Π	///	///	///	<u>///</u>	///	////	///	////	///	///		

Summary for Subcatchment 41S: P16

[49] Hint: Tc<2dt may require smaller dt

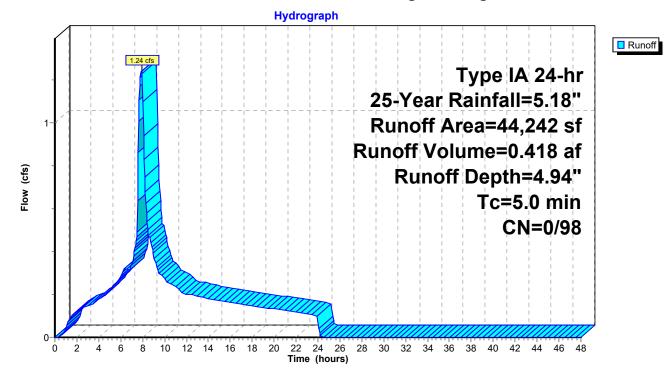
Runoff	=	0.25 cfs @	7.89 hrs,	Volume=
Routed	to P	ond 47P : Pond #	3	

0.085 af, Depth= 4.94"

	8,967 8,967		Impervious 100.00% Ir			rea											
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		city fs)	Desci	iptic	n									
5.0						Direc	t En	try,									
				Sub	cato	chme	nt 4	1S:	P1	6							
				н	ydrog	graph											
0.28					- +		- 	+ +	+		_			+	+		Runc
0.26		0.25 cfs			 		 _!				· T +,	100	- 	- 	 / - L		
0.24	/ 		L L		_ <u> </u>		_!	╎				/pe					
0.22				+ -	 +		_	+ +	+		Ra		+	+	+		
0.2				 +	 +		 -	Rι	ind	off	Ar	ea	=8,	96	7 s	sf	
0.18			$ \frac{1}{1} \frac{1}{1} \frac{1}{1}$	 - $\frac{1}{1}$ - $\frac{1}{1}$ -	 - 		Ru	ino	ff¦	Vo	lur	ne	=0.	08	5 ₋a	af	
(දූ) 0.16	r´ 			$-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$	 _ <u> </u>		 _!	F	Rur	no	ff-E)ep	th:	=4 .	94		
(classification) (class	≮ I ↓ . < I				- + I		 _	 + 	+ 	 	_ 	Tc	=5.	0 1	mi	n	
• 0.12 0.1-					- +		- 	 +	+ 	- 	- 		ĊN	1	1	1	
0.08			$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$	$- \frac{1}{1} \frac{1}{1} - $	- 	$\frac{1}{1}$ = $-\frac{1}{1}$ = $-\frac{1}{1}$	-	$\frac{1}{1} = -\frac{1}{1}$	$ \frac{1}{1}$	-	- 	 		- 			
0.06				$- \frac{1}{1} \frac{1}{1} - $	- <u> </u>		-! !	$\frac{1}{1} \frac{1}{1}$	$ \frac{1}{1}$	<u> </u> 	- 	 		$\frac{1}{1}$	$\frac{1}{1}$ = -		
0.04		+			- + 		- 	+ + 	+ 	- 	- 	 	 	+ 	⊥ 	 	
0.02		+	+ - 				- 	+ + 	+ 	- 	- 	 	+ 	+ 	+ 	 	
0		· · · · · · · · · · · · · · · · · · ·		·····	/ /					<u>///</u>					///	///	

Summary for Subcatchment 50S: Existing Buildings

Includes the roofs from existing buildings 1-8 and some adjacent sidewalks for areas within master plan (apartments). See existing drainage basin map for corresponding areas.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.24 cfs @ 7.89 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.418 af, Depth= 4.94"

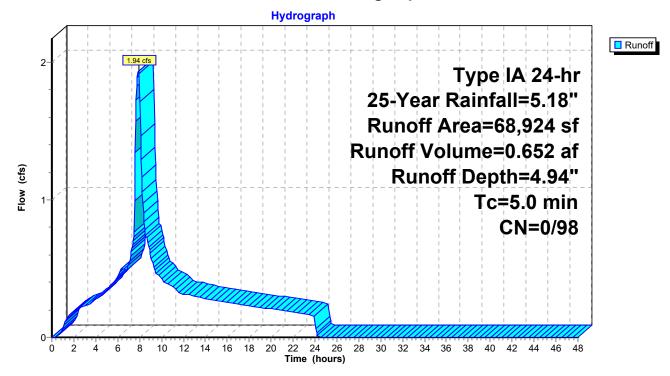
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

_	A	rea (sf)	CN I	Description		
*		44,242	98 I	mpervious	Roof & Adj	jacent Sidewalk
		44,242	98 ⁻	100.00% In	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 50S: Existing Buildings

Summary for Subcatchment 51S: Existing Impervious Areas

Includes existing impervious pavement within the new master plan development area (apartments). See existing drainage basin map for corresponding areas.

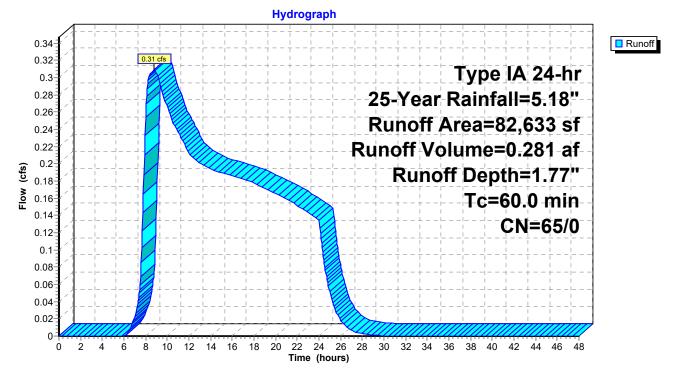

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.94 cfs @ 7.89 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.652 af, Depth= 4.94"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

	A	rea (sf)	CN I	Description		
*		68,924	98 I	mpervious	pavement	and sidewalk
		68,924	98 ⁻	100.00% In	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 51S: Existing Impervious Areas



8.77 hrs, Volume= 0.281 af, Depth= 1.77" Runoff 0.31 cfs @ = Routed to Reach 53R : Existing Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

Area (sf)	CN	Description		
82,633	65	Woods/gras	ss comb., F	Fair, HSG B
82,633	65	100.00% Pe	ervious Are	ea
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
60.0				Direct Entry,

Subcatchment 52S: Existing Landscape Area

Page 45

Printed 2/21/2023

Summary for Subcatchment 94S: Pond #3

[49] Hint: Tc<2dt may require smaller dt

0.03 0.02 0.01 0

2

4 6

0

8

10

12 14 16

18 20

Time (hours)

Runoff	=	0.12 cfs @	7.89 hrs,	Volume=
Routed	to Pon	d 47P : Pond #	3	

0.041 af, Depth= 4.94"

22 24 26 28 30 32 34 36 38 40 42 44 46 48

A	rea (sf)	CN D	escription								
	4,349	98 V	Vater Surfa	ace, HSG B	3						
	4,349	98 1	00.00% In	npervious A	rea						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	n					
5.0					Direct En	try,					
			5	Subcatch	ment 94S	: Pond	#3				
				Hydro	graph						
		 				 ++-			- + +		Runoff
0.13		0.12 cfs					i i _LL				
0.12							ר ד'י	ype I/	4 24-ł	hr	
0.11						25-Yea					
0.1	1/1 					Runo	ff Aı	rea=4	349-s	sf	
0.09				+ +	R u	noff V	1 1		•		
^{80.0} نوب	 								=4.94		
0.08 0.07 0.07 0.06	⊒/´ = 				 			1 - 1	I I	1	
e 0.06								I C=5	5.0 mi	n	
0.05								C	N=0/9	8	
0.04]/ 				 - -	 ++-			 _ + +	 	
				1 1 1			1 1	1 1	1	1	

Summary for Subcatchment 95S: Pond #1

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.13 cfs @	7.89 hrs,	Volume=
Routed	to Ponc	146P : Pond #	±1	

0.043 af, Depth= 4.94"

	4,554	98	Water																	
	4,554	98	100.0	0% In	npervi	ous A	rea													
Тс	Length	Slop		ocity	Сара		De	scri	ptio	n										
nin)	(feet)	(ft/ft) (ft/	sec)		(cfs)														
5.0							Dir	ect	Ent	t ry ,										
				ę	Subc	atch	me	nt S	95S	: P	on	d #	‡1							
						Hydro	grap	h												
0.14						+		 	 				 	 	 	 ·		 		Rur
0.13		0.13 cfs				<u>1</u> 1 1	- <u> </u>	'								1 .	່າ	 1 L		
0.12						+ 						+ 				IA 				
0.11			 			T I I	- 	 	2	5-	Ye	ar	R	air	nta	П=	5.	18		
0.1							 I I	1		R	un	of	fΑ	re	a=	4,	554	4 s	sf	
0.09							 		Ru	nc	off	Vo	blu	m	e=	0.0)4:	3 a	af	
0.08						I		 		F	Ru	no	ff	De	nt	h=	: 4	94		
0.08			'			, 	 _ L	 	 				, 	1	1 -	=5 .	1	1	1	
0.06						 +	 -	 	 		 	 +	 	 	1	1	1	1	1	
0.05						i i	 	 						i i i		CN	=0)/9	8	
0.04						, , 	 	' 	 			 	' 	' 	 	 			 	
0.03				 		 +	 -	 	 		 	 +	 	 	 	 	 +	 ↓	 	
0.02							-	 	 		 	 +	 	 	 	 +	 +	 +	 	
0.01						-	4					, 	, 	, 	, 	 	, 	 	· 	
0-			n finn fin	 			·	ЩЦ	////	30	32	34	36	38	Щ.	Щ.	///	Щ	Щ	

Summary for Subcatchment 96S: Pond #2

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.08 cfs @	7.89 hrs,	Volume=
Routed	to Pond	d 48P : Pond #	£2	

0.027 af, Depth= 4.94"

	2,830 2,830	98 98	Water 5																
Tc L	ength	Slope			•	acity		scrip	otio	n									
nin)	(feet)	(ft/ft				(cfs)		•											
5.0							Dir	ect	Ent	t ry ,									
				G	ubc	atch	moi	nt Q	22	·D	on	d #	12						
				J	ubc	Hydro			00	. F	011	uπ	-2						
							giupi	-	1			1	1			1	1	1	
0.085		ii	÷ ; ;			†i L L		i	- - -			;	i : ! !	i i		i !	i : !	i	- - -
0.08	1	0.08 cfs			-+			 	 +	 		 		ур	-	IA-	2/	1_k	r-
0.075	/ i /!	i i +	i i 		- +	 +	i 1	i 4	; + - <u>-</u>	 +	 	i ·							
0.07					_ <u> </u>		!	 	2	5-`	Ye	ar	Ra	ain	fa	11=	5.	18	÷
0.065	/				- <u> </u>				<u> </u>	Rı	in	off	F-A	rea	a=	2.8	83	0- s	sf-
0.06	¦	+			$-\frac{1}{T}$	$\frac{1}{1}\frac{1}{1}$	¦		<u></u>	<u> </u>						· · · ·	·	<u> </u>	
0.055	/	+			-+	+	·	-	τu	no		VC	Piu	me)—	U. (JZ	(_č	₽
0.05	/	+			- +	+	·		+ 	- F	Ru	no	ff	De	pt	h=	4.	94	*
0.045	/!				- + !	↓	!		↓ 	⊢ 			↓ !	+ +		:5 .		+	+
0.04	/¦							 				'	1 	·		1	1	1	1
0.03	/				- -	<u>-</u> <u>-</u> - 1 1	¦ :		<u>-</u> 	 		; 	<u>;</u>	<u>-</u>	(PN	=0)/9	8
0.025					- T !	T = -		1	т — — !			1	 	T = - I I I) — — ·	T — — !	т — — !
0.02					- -											 		T — — 	т — — —
0.015			- Um	\overline{m}	1				i L				i i i	i i Ll			 	i i 1	i L
0.01							\overline{m}	 	 			 	 			 	 	 	$\frac{1}{\frac{1}{2}} = -$
0.005			 				-												

10 12 14 16 18 20

Summary for Subcatchment 97S: Pond #4

[49] Hint: Tc<2dt may require smaller dt

0

0 2 4 6 8

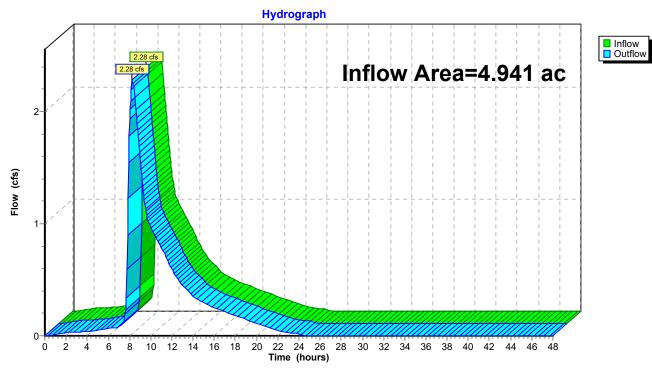
Runoff	=	0.04 cfs @	7.89 hrs,	Volume=
Routed	to Pond	d 49P : Pond #	# 4	

0.015 af, Depth= 4.94"

22 24 26 28 30 32 34 36 38 40 42 44 46 48

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-Year Rainfall=5.18"

Area (sf)	CN Descriptio)				
1,585		face, HSG E					
1,585	98 100.00% I	mpervious A	rea				
Tc Length min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Descri	ption			
5.0			Direct	Entry,			
		Subcatch	ment	97S: Pond	#4		
		Hydro	graph				
		· · · · · ·					
0.048		1 + +			· - + +		Runoff
0.046	0.04 cfs		!!	$\begin{array}{c} \bot \\ I \end{array} = \begin{array}{c} - \begin{array}{c} \bot \\ I \end{array} = \begin{array}{c} - \begin{array}{c} I \\ I \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \begin{array}{c} I \\ I \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \begin{array}{c} I \\ I \end{array} = \begin{array}{c} - \end{array} = \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \end{array} = \begin{array}{c} - \end{array} = \end{array} = \begin{array}{c} - \end{array} = \begin{array}{c} - \end{array} = \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} - \end{array} = \end{array} = \end{array} = \end{array} = \begin{array}{c} - \end{array} = \end{array}$	·		
0.044				+ + -	Type IA	24-hr	
0.042 +		i	ii		·		
0.04				25-Yea	ar Rainfall	-5.18	
0.036		 +	 		off Area=1,	595 -f	
0.034					m Alea-I,	202 21	
0.032			!!	Runoff \	/olume=0.	015 af	
0.03		1 + +					
(g) 0.028 0.028 0.026				Run	off Depth	=4.94"	
0.024 0.022	····				I _	1 1 1	
₽ 0.022		++		+ + -	IC=5	0 min	
0.02		<u></u>		<u>+</u> <u>+</u> <u>+</u> <u>+</u> -			
0.018		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			·	 =0/98	
0.016) — — T — — F — — I — . J — — L — _ L — _ L — .			·	J	
0.012		 ++			- + - +	++	
0.01				+ + + + -			
0.008				+ + -	- + +	++	
0.006				+ + + + -	· - +	$-\frac{1}{1} \frac{1}{1} \frac{1}{1}$	
				+ + -			

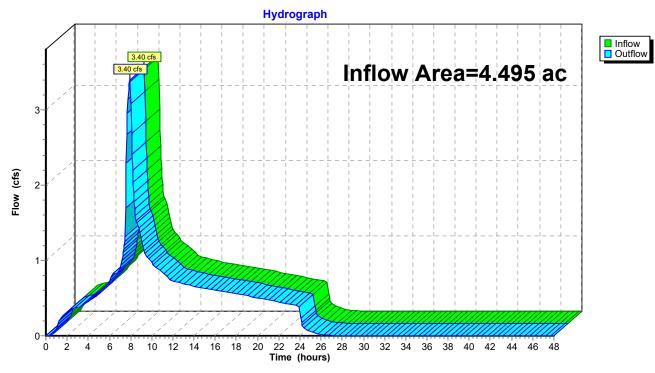

Time (hours)

Summary for Reach 50R: Discharge

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	4.941 ac,10	0.00% Impervious, Inflo	ow Depth = 1.59"	for 25-Year event
Inflow	=	2.28 cfs @	8.22 hrs, Volume=	0.657 af	
Outflow	=	2.28 cfs @	8.22 hrs, Volume=	0.657 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


Reach 50R: Discharge

Summary for Reach 53R: Existing Discharge

[40] Hint: Not Described (Outflow=Inflow)

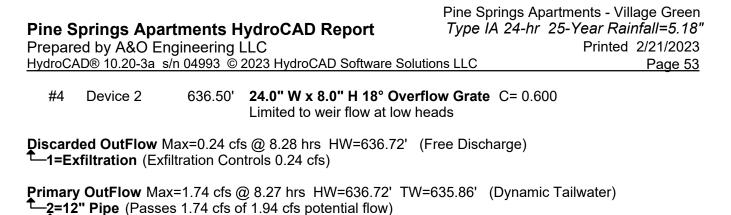
Inflow Are	ea =	4.495 ac, 5 [°]	7.80% Impervious, I	Inflow Depth = 3.61"	for 25-Year event
Inflow	=	3.40 cfs @	7.92 hrs, Volume=	= 1.351 af	
Outflow	=	3.40 cfs @	7.92 hrs, Volume=	= 1.351 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 53R: Existing Discharge

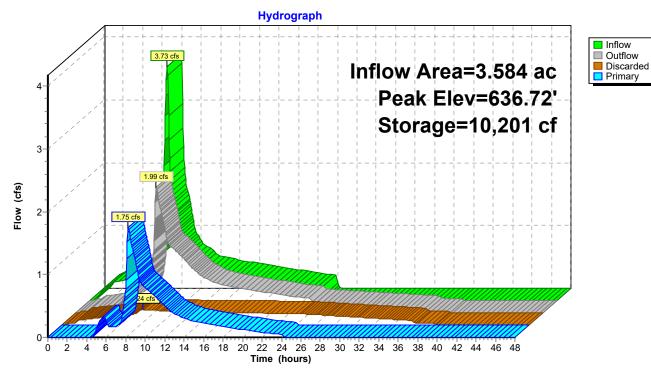
Pine Springs Apartments HydroCAD ReportType IAPrepared by A&O Engineering LLCHydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Pine Springs Apartments - Village Green *Type IA 24-hr 25-Year Rainfall=5.18"* Printed 2/21/2023 as LLC Page 52

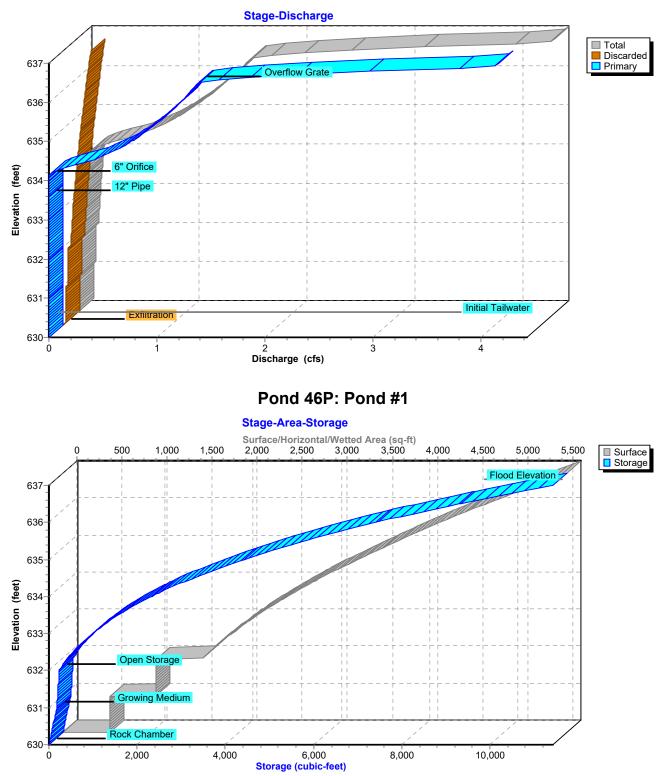

Summary for Pond 46P: Pond #1

Inflow Area =	3.584 ac,100	0.00% Impervious, Inf	low Depth = 3.46" for 2	5-Year event					
Inflow =	3.73 cfs @	7.96 hrs, Volume=	1.032 af						
Outflow =	1.99 cfs @	8.27 hrs, Volume=	1.032 af, Atten= 47	%, Lag= 18.6 min					
Discarded =	0.24 cfs @	8.28 hrs, Volume=	0.471 af	-					
Primary =	1.75 cfs @	8.27 hrs, Volume=	0.561 af						
Routed to F	Routed to Pond 47P : Pond #3								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 636.72' @ 8.28 hrs Surf.Area= 5,277 sf Storage= 10,201 cf Flood Elev= 637.00' Surf.Area= 5,590 sf Storage= 11,426 cf


Plug-Flow detention time= 212.5 min calculated for 1.031 af (100% of inflow) Center-of-Mass det. time= 213.1 min (865.2 - 652.1)

Volume	Invert	Avail.St	orage	Storage Description	on		
#1	632.00'	11,	193 cf				
#2	631.00'		52 cf	Growing Medium		d below (Recalc)	
				518 cf Overall x 1			
#3	630.00'		181 cf	Rock Chamber (I		pelow (Recalc)	
			400 5	518 cf Overall x 3			
		11,4	426 cf	Total Available St	orage		
Elevation	Surf.	Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
632.00		518	104.0	0	0	518	
633.00		,018	147.0	754	754	1,386	
634.00		,697	191.0	1,343	2,097		
635.00		,527	224.0	2,098	4,195		
636.00		,482	253.0	2,992	7,187	4,817	
637.00	4	,554	282.0	4,006	11,193	6,081	
Elevation	Surf.	Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(9	sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
631.00		518	104.0	0	0	518	
632.00		518	104.0	518	518	622	
Flovetion	Surf.	Araa	Dorim	Inc.Store	Cum.Store	Wet.Area	
Elevation (feet)		sq-ft)	Perim. (feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
630.00	· · · · ·	518	104.0	0	0	518	
631.00		518	104.0	518	518	622	
031.00		510	104.0	510	510	022	
Device F	Routing	Inver	t Outle	et Devices			
#1 [Discarded	630.00	' 2.00	0 in/hr Exfiltratior	n over Surface a	rea	
#2 F	Primary	633.60	' 12.0	" Round 12" Pipe)		
	-		L= 4	00.0' CPP, mitere	d to conform to f	ill, Ke= 0.700	
				/ Outlet Invert= 63		S= 0.0040 '/' Cc= 0	0.900
				.010, Flow Area= (
#3 [Device 2	634.10	6.0"	Vert. 6" Orifice	C= 0.600 Limite	d to weir flow at lov	w heads


3=6" Orifice (Orifice Controls 0.88 cfs @ 4.47 fps)

-4=Overflow Grate (Weir Controls 0.86 cfs @ 1.38 fps)

Pond 46P: Pond #1

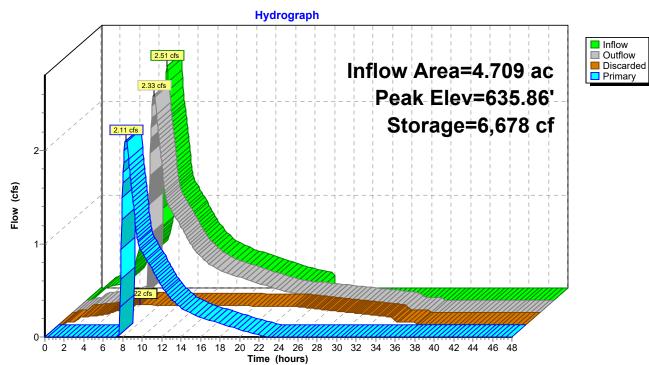
Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Pond 46P: Pond #1

Pine Springs Apartments HydroCAD ReportType LPrepared by A&O Engineering LLCHydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 47P: Pond #3

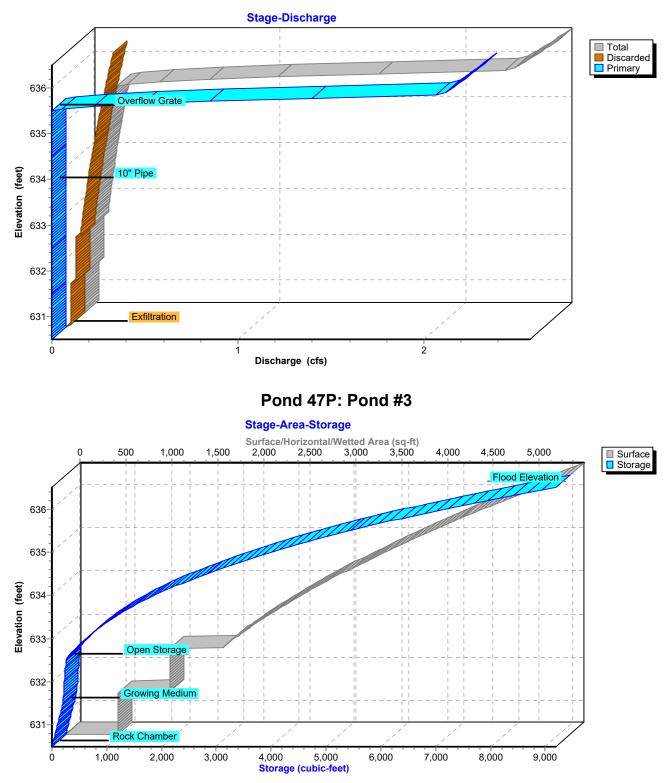
Inflow Area =	4.709 ac,100	0.00% Impervious, Inflow De	epth = 2.61" for 25-Year event					
Inflow =	2.51 cfs @	8.22 hrs, Volume=	1.024 af					
Outflow =	2.33 cfs @	8.36 hrs, Volume=	1.025 af, Atten= 7%, Lag= 8.5 min					
Discarded =	0.22 cfs @	8.36 hrs, Volume=	0.464 af					
Primary =	2.11 cfs @	8.36 hrs, Volume=	0.561 af					
Routed to Reach 50R : Discharge								


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 635.86' @ 8.36 hrs Surf.Area= 4,713 sf Storage= 6,678 cf Flood Elev= 636.50' Surf.Area= 5,485 sf Storage= 9,193 cf

Plug-Flow detention time= 176.8 min calculated for 1.023 af (100% of inflow) Center-of-Mass det. time= 177.3 min (851.4 - 674.1)

Invert Ava	il.Storage	Storage Descriptio	n		
632.50'	8,937 cf	Open Storage (Irr	egular)Listed belo	w (Recalc)	
631.50'	57 cf			elow (Recalc)	
630.50'	199 cf			ow (Recalc)	
	9,193 cf	I otal Available Sto	orage		
Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
	149.0	0	0	568	
	195.0	890	890	1,839	
4,349	308.0	3,743	8,937	6,431	
Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
568	149.0	0	0	568	
568	149.0	568	568	717	
Surf Area	Perim.	Inc.Store	Cum.Store	Wet Area	
			-		
	149.0	0	0	568	
568	149.0	568	568	717	
outing	overt Outl	et Devices			
			over Surface area	9	
innary 00			to conform to fill	Ke= 0 700	
					0
					-
evice 2 63				0.600	
	Limi	ted to weir flow at lo	wheads		
	632.50' 631.50' 630.50' Surf.Area (sq-ft) 568 1,258 2,127 3,168 4,349 Surf.Area (sq-ft) 568 568 Surf.Area (sq-ft) 568 568 568 0uting Ir iscarded 63r rimary 633	632.50' 8,937 cf 631.50' 57 cf 630.50' 199 cf 9,193 cf Surf.Area Perim. (sq-ft) (feet) 568 149.0 1,258 195.0 2,127 239.0 3,168 281.0 4,349 308.0 Surf.Area Perim. (sq-ft) (feet) 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 568 149.0 <td>632.50' 8,937 cf Open Storage (Irr 631.50' 57 cf Growing Medium 630.50' 199 cf Rock Chamber (Ir 630.50' 199 cf Rock Chamber (Ir 568 cf Overall x 33 9,193 cf Total Available Store Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 568 149.0 0 1,258 195.0 890 2,127 239.0 1,674 3,168 281.0 2,630 4,349 308.0 3,743 Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 568 149.0 0 568 149.0 0 568 149.0 0 568 149.0 0 568 149.0 568 outing Invert Outlet Devices iscarded 630.50' 2.000 in/hr Exfiltration rimary 633.92'</td> <td>632.50' 8,937 cf Open Storage (Irregular)Listed belo 631.50' 57 cf Growing Medium (Irregular)Listed belo 630.50' 199 cf Rock Chamber (Irregular)Listed belo 630.50' 199 cf Rock Chamber (Irregular)Listed belo 568 cf Overall x 35.0% Voids 9,193 cf Total Available Storage Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 568 149.0 0 0 1,258 195.0 890 890 2,127 239.0 1,674 2,564 3,168 281.0 2,630 5,194 4,349 308.0 3,743 8,937 Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 568 149.0 0 0 0 568 149.0 568 568 568 Surf.Area Perim. Inc.Store Cum.Store 10.0<td>632.50' 8,937 cf Open Storage (Irregular)Listed below (Recalc) 631.50' 57 cf Growing Medium (Irregular)Listed below (Recalc) 630.50' 199 cf Rock Chamber (Irregular)Listed below (Recalc) 568 cf Overall x 35.0% Voids 9,193 cf Total Available Storage Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (sq-ft) (sq-ft) 568 149.0 0 0 568 1,258 195.0 890 890 1,839 2,127 239.0 1,674 2,564 3,374 3,168 281.0 2,630 5,194 5,131 4,349 308.0 3,743 8,937 6,431 Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 568 149.0 0 0 568 568 568 149.0 0 0 568</td></td>	632.50' 8,937 cf Open Storage (Irr 631.50' 57 cf Growing Medium 630.50' 199 cf Rock Chamber (Ir 630.50' 199 cf Rock Chamber (Ir 568 cf Overall x 33 9,193 cf Total Available Store Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 568 149.0 0 1,258 195.0 890 2,127 239.0 1,674 3,168 281.0 2,630 4,349 308.0 3,743 Surf.Area Perim. Inc.Store (sq-ft) (feet) (cubic-feet) 568 149.0 0 568 149.0 0 568 149.0 0 568 149.0 0 568 149.0 568 outing Invert Outlet Devices iscarded 630.50' 2.000 in/hr Exfiltration rimary 633.92'	632.50' 8,937 cf Open Storage (Irregular)Listed belo 631.50' 57 cf Growing Medium (Irregular)Listed belo 630.50' 199 cf Rock Chamber (Irregular)Listed belo 630.50' 199 cf Rock Chamber (Irregular)Listed belo 568 cf Overall x 35.0% Voids 9,193 cf Total Available Storage Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 568 149.0 0 0 1,258 195.0 890 890 2,127 239.0 1,674 2,564 3,168 281.0 2,630 5,194 4,349 308.0 3,743 8,937 Surf.Area Perim. Inc.Store Cum.Store (sq-ft) (feet) (cubic-feet) (cubic-feet) 568 149.0 0 0 0 568 149.0 568 568 568 Surf.Area Perim. Inc.Store Cum.Store 10.0 <td>632.50' 8,937 cf Open Storage (Irregular)Listed below (Recalc) 631.50' 57 cf Growing Medium (Irregular)Listed below (Recalc) 630.50' 199 cf Rock Chamber (Irregular)Listed below (Recalc) 568 cf Overall x 35.0% Voids 9,193 cf Total Available Storage Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (sq-ft) (sq-ft) 568 149.0 0 0 568 1,258 195.0 890 890 1,839 2,127 239.0 1,674 2,564 3,374 3,168 281.0 2,630 5,194 5,131 4,349 308.0 3,743 8,937 6,431 Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 568 149.0 0 0 568 568 568 149.0 0 0 568</td>	632.50' 8,937 cf Open Storage (Irregular)Listed below (Recalc) 631.50' 57 cf Growing Medium (Irregular)Listed below (Recalc) 630.50' 199 cf Rock Chamber (Irregular)Listed below (Recalc) 568 cf Overall x 35.0% Voids 9,193 cf Total Available Storage Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (sq-ft) (sq-ft) 568 149.0 0 0 568 1,258 195.0 890 890 1,839 2,127 239.0 1,674 2,564 3,374 3,168 281.0 2,630 5,194 5,131 4,349 308.0 3,743 8,937 6,431 Surf.Area Perim. Inc.Store Cum.Store Wet.Area (sq-ft) (feet) (cubic-feet) (cubic-feet) (sq-ft) 568 149.0 0 0 568 568 568 149.0 0 0 568

Discarded OutFlow Max=0.22 cfs @ 8.36 hrs HW=635.86' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.22 cfs)


Primary OutFlow Max=2.11 cfs @ 8.36 hrs HW=635.86' TW=0.00' (Dynamic Tailwater) -2=10" Pipe (Barrel Controls 2.11 cfs @ 3.86 fps) -3=Overflow Grate (Passes 2.11 cfs of 2.37 cfs potential flow)

Pond 47P: Pond #3

Page 56

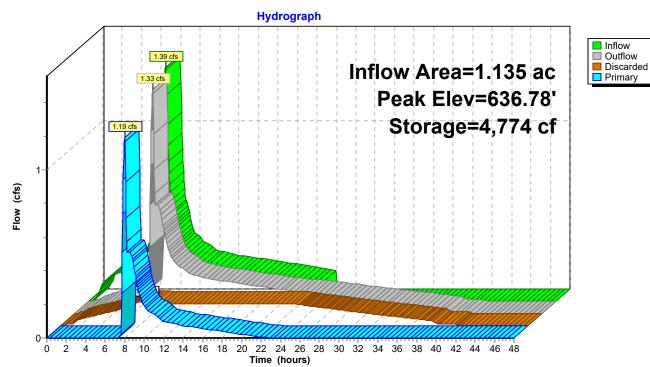
Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Pond 47P: Pond #3

Pine Springs Apartments HydroCAD ReportType I.Prepared by A&O Engineering LLCHydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

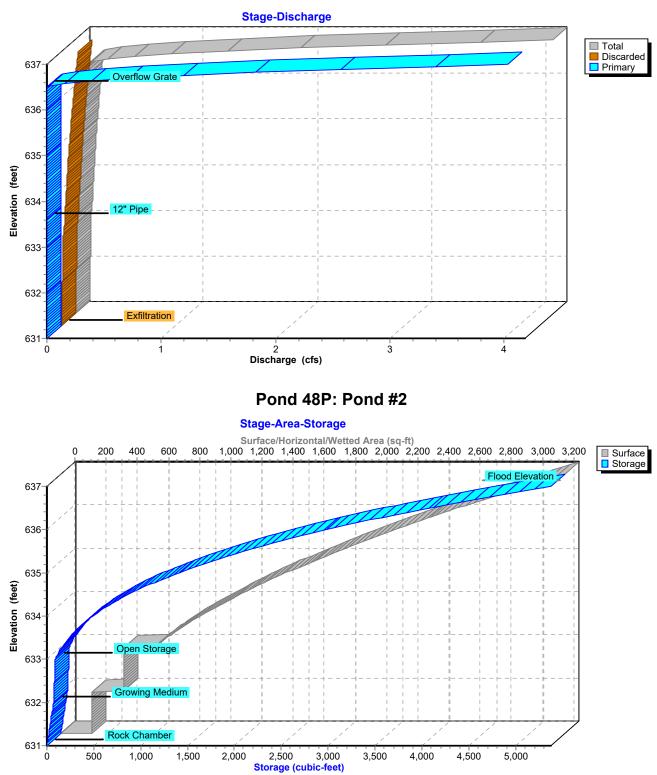
Summary for Pond 48P: Pond #2

Inflow Area =	1.135 ac,100	0.00% Impervious, Inflow D	epth = 4.94" for 25-Year event						
Inflow =	1.39 cfs @	7.89 hrs, Volume=	0.468 af						
Outflow =	1.33 cfs @	8.00 hrs, Volume=	0.468 af, Atten= 4%, Lag= 6.4 min						
Discarded =	0.14 cfs @	8.35 hrs, Volume=	0.311 af						
Primary =	1.19 cfs @	8.00 hrs, Volume=	0.156 af						
Routed to Pond	Routed to Pond 46P : Pond #1								


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 636.78' @ 8.35 hrs Surf.Area= 3,031 sf Storage= 4,774 cf Flood Elev= 637.00' Surf.Area= 3,234 sf Storage= 5,376 cf

Plug-Flow detention time= 301.8 min calculated for 0.467 af (100% of inflow) Center-of-Mass det. time= 302.5 min (957.7 - 655.2)

Volume	Invert	Avail.Storage	Storage Descrip	tion		
#1	633.00'	5,285 c	Open Storage (Irregular)Listed be	elow (Recalc)	
#2	632.00'	20 ct	Growing Mediu	m (Irregular)Listed	d below (Recalc)	
			202 cf Overall x			
#3	631.00'	71 c		(Irregular)Listed b	elow (Recalc)	
		5 0 7 0	202 cf Overall x			
		5,376 c	Total Available S	storage		
Elevation	Surf.A	rea Perim	. Inc.Store	Cum.Store	Wet.Area	
(feet)		-ft) (feet		(cubic-feet)	(sq-ft)	
633.00	2	202 86.	0 0	0	202	
634.00		36 129.		399	946	
635.00		. 167 .		,	1,853	
636.00		969 202.	,	2,899	2,897	
637.00	2,8	330 228.	2,387	5,285	3,812	
Elevation	Surf.A	rea Perim	. Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq	-ft) (feet) (cubic-feet)	(cubic-feet)	(sq-ft)	
632.00		202 86.	0 0	0	202	
633.00	2	86.	202	202	288	
Elevation	Surf.A	rea Perim	. Inc.Store	Cum.Store	Wet.Area	
(feet)		-ft) (feel		(cubic-feet)	(sq-ft)	
631.00		202 86.		0	202	
632.00		202 86.		202	288	
				-		
Device R	outing		tlet Devices			
	iscarded		00 in/hr Exfiltratio		rea	
#2 P	rimary		0" Round 12" Pip			
			400.0' CPP, miter			
			et / Outlet Invert= 6		= 0.0040 '/' Cc=	0.900
#0 D			0.010, Flow Area=		- 0 600	
#3 D	evice 2		.0" W x 8.0" H 18° nited to weir flow at		J- U.0UU	
		LII		IUW IICaus		


Discarded OutFlow Max=0.14 cfs @ 8.35 hrs HW=636.78' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=1.16 cfs @ 8.00 hrs HW=636.76' TW=636.45' (Dynamic Tailwater) -2=12" Pipe (Outlet Controls 1.16 cfs @ 1.48 fps) -3=Overflow Grate (Passes 1.16 cfs of 1.19 cfs potential flow)

Pond 48P: Pond #2

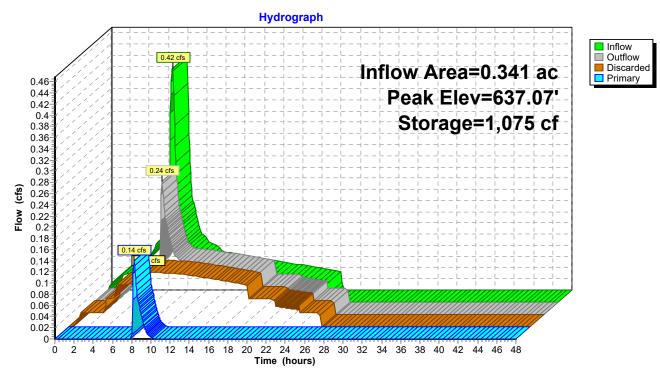
Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Pond 48P: Pond #2

Summary for Pond 49P: Pond #4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=23)

Inflow Area =	0.341 ac,10	0.00% Impervious, Inflow I	Depth = 4.94" for 25-Year event
Inflow =	0.42 cfs @	7.89 hrs, Volume=	0.141 af
Outflow =	0.24 cfs @	8.24 hrs, Volume=	0.141 af, Atten= 43%, Lag= 20.4 min
Discarded =	0.10 cfs @	8.24 hrs, Volume=	0.133 af
Primary =	0.14 cfs @	8.24 hrs, Volume=	0.008 af
Routed to Pond	d 46P : Pond #	± 1	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 637.07' @ 8.24 hrs Surf.Area= 2,115 sf Storage= 1,075 cf Flood Elev= 638.00' Surf.Area= 2,659 sf Storage= 2,283 cf

Plug-Flow detention time= 104.0 min calculated for 0.140 af (100% of inflow) Center-of-Mass det. time= 104.1 min (759.4 - 655.2)

Volume	Invert	Avail.	Storage	Storage Descripti	on		
#1	636.00'		2,041 cf	Open Storage (Ir	regular)Listed be	low (Recalc)	
#2	635.00'		54 cf	Growing Mediun		below (Recalc)	
				537 cf Overall x			
#3	634.00'		188 cf	Rock Chamber (elow (Recalc)	
			<u> </u>	537 cf Overall x 3			
			2,283 cf	Total Available St	orage		
Elevation	Surf.A	Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(s	q-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
636.00		537	102.0	0	0	537	
637.00	1,	,003	131.0	758	758	1,087	
638.00	1,	,585	159.0	1,283	2,041	1,749	
- 1 <i>·</i> :	0.00		. .				
Elevation	Surf.A		Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(S	q-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
635.00		537	102.0	0	0	537	
636.00		537	102.0	537	537	639	
Elevation	Surf.A	Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		q-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
634.00	· · · · ·	537	102.0	0	0	537	
635.00		537	102.0	537	537	639	
<u>Device</u> R	louting	Inv	ert Outle	et Devices			
	iscarded	634.		0 in/hr Exfiltratior	n over Surface ar	ea	
#2 P	rimary	636.		Round 8" Pipe			
				25.0' CPP, mitere			
						= 0.0160 '/' Cc= 0	.900
				.010, Flow Area=			
#3 D	evice 2	637.		" W x 8.0" H 18° C		<i>;</i> = 0.600	
			LIMI	ted to weir flow at I	ow neads		

Discarded OutFlow Max=0.10 cfs @ 8.24 hrs HW=637.07' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.14 cfs @ 8.24 hrs HW=637.07' TW=636.72' (Dynamic Tailwater) -2=8" Pipe (Passes 0.14 cfs of 0.70 cfs potential flow) -3=Overflow Grate (Weir Controls 0.14 cfs @ 0.85 fps)

Pond 49P: Pond #4

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Stage-Discharge Total Discarded 638 Primary Overflow Grate 637 Elevation (feet) 8" Pipe 636 635 Exfiltration 634 ż 0 Discharge (cfs) Pond 49P: Pond #4 Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 1.000 1,200 1,400 1,600 1,800 2,400 200 400 600 800 2,000 2,200 0 2,600 SurfaceStorage Flood Elevation 638 637 Elevation (feet) Open Storage 636 Growing Medium 635 Rock Chamber 634 Ó 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 Storage (cubic-feet)

Pond 49P: Pond #4

 Pine Springs Apartments HydroCAD Report
 Pine Springs Apartments - Village Green

 Prepared by A&O Engineering LLC
 Type IA 24-hr Destination Rainfall=3.60"

 HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC
 Printed 2/21/2023

 Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points
 Page 64

 Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points
 Runoff by SBUH method, Split Pervious/Imperv.

Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=2,073 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment8S: Apt Building 1 Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af Runoff Area=5.606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment9S: Apt Building 2 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment10S: Apt Building 3 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment11S: Apt Building 4 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment12S: Apt Building 5 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment13S: Apt Building 6 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment14S: Apt Building 7 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment15S: Apt Building 8 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5.606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment16S: Apt Building 9 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment17S: Apt Building 10 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5.606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment18S: Apt Building 11 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Subcatchment19S: Apt Building 12 Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment20S: Apt Building 13 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment21S: Apt Building 14 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment22S: Apt Building 15 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af Subcatchment23S: Apt Building 16 Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=3.37"

Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af

Pine Springs Apartments HydroCAD Report	Pine Springs Apartments - Village Green Type IA 24-hr Destination Rainfall=3.60"
Prepared by A&O Engineering LLC	Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software	Solutions LLC Page 65

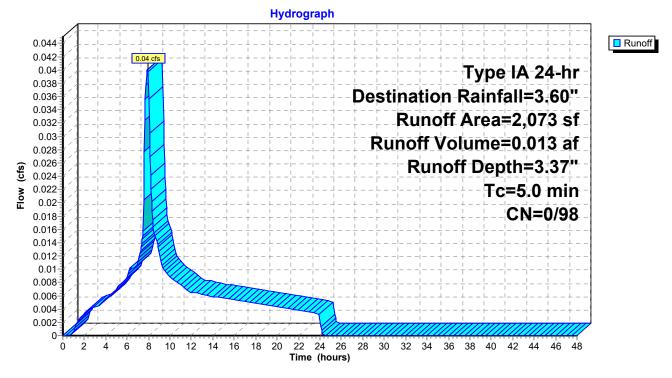
Subcatchment26S: P1	Runoff Area=5,680 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.037 af
Subcatchment27S: P2	Runoff Area=4,460 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.09 cfs 0.029 af
Subcatchment28S: P3	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.22 cfs 0.072 af
Subcatchment29S: P4	Runoff Area=7,128 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.14 cfs 0.046 af
Subcatchment30S: P5	Runoff Area=11,417 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.22 cfs 0.074 af
Subcatchment31S: P6	Runoff Area=7,570 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.15 cfs 0.049 af
Subcatchment32S: P7	Runoff Area=7,142 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.14 cfs 0.046 af
Subcatchment33S: P8	Runoff Area=7,675 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.15 cfs 0.049 af
Subcatchment34S: P9	Runoff Area=6,421 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.12 cfs 0.041 af
Subcatchment35S: P10	Runoff Area=6,146 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.12 cfs 0.040 af
Subcatchment36S: P11	Runoff Area=7,429 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.14 cfs 0.048 af
Subcatchment37S: P12	Runoff Area=9,368 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.18 cfs 0.060 af
Subcatchment38S: P13	Runoff Area=5,595 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.11 cfs 0.036 af
Subcatchment39S: P14	Runoff Area=4,779 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.09 cfs 0.031 af
Subcatchment40S: P15	Runoff Area=4,741 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.09 cfs 0.031 af
Subcatchment41S: P16	Runoff Area=8,967 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.17 cfs 0.058 af
Subcatchment50S: Existing Buildings	Runoff Area=44,242 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.86 cfs 0.285 af

Pine Springs Apartments HydroCAD Report	Pine Springs Apartments - Village Green Type IA 24-hr Destination Rainfall=3.60"
Prepared by A&O Engineering LLC	Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Sol	lutions LLC Page 66

Subcatchment51S: Exis	ting Impervious	Runoff Area=68,924 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=1.33 cfs 0.444 af
Subcatchment52S: Exis	ting Landscape	Runoff Area=82,633 sf 0.00% Impervious Runoff Depth=0.81" Tc=60.0 min CN=65/0 Runoff=0.10 cfs 0.127 af
Subcatchment94S: Pon	d #3	Runoff Area=4,349 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.08 cfs 0.028 af
Subcatchment95S: Pon	d #1	Runoff Area=4,554 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.09 cfs 0.029 af
Subcatchment96S: Pon	d #2	Runoff Area=2,830 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.018 af
Subcatchment97S: Pon	d #4	Runoff Area=1,585 sf 100.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Reach 50R: Discharge		Inflow=0.50 cfs 0.182 af Outflow=0.50 cfs 0.182 af
Reach 53R: Existing Dis	charge	Inflow=2.23 cfs 0.856 af Outflow=2.23 cfs 0.856 af
Pond 46P: Pond #1	Discarded=0.20 c	Peak Elev=635.83' Storage=6,851 cf Inflow=1.78 cfs 0.627 af fs 0.415 af Primary=0.40 cfs 0.213 af Outflow=0.60 cfs 0.627 af
Pond 47P: Pond #3	Discarded=0.21 c	Peak Elev=635.65' Storage=5,943 cf Inflow=1.33 cfs 0.528 af fs 0.411 af Primary=0.45 cfs 0.117 af Outflow=0.66 cfs 0.528 af
Pond 48P: Pond #2	Discarded=0.13 c	Peak Elev=636.60' Storage=4,305 cf Inflow=0.96 cfs 0.318 af fs 0.282 af Primary=0.21 cfs 0.036 af Outflow=0.34 cfs 0.318 af
Pond 49P: Pond #4	Discarded=0.09 c	Peak Elev=636.73' Storage=745 cf Inflow=0.29 cfs 0.096 af fs 0.096 af Primary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.096 af
Total Ru	noff Area = 9.436	ac Runoff Volume = 2.242 af Average Runoff Depth = 2.85" 20.10% Pervious = 1.897 ac 79.90% Impervious = 7.539 ac

Summary for Subcatchment 8S: Apt Building 1

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.90 hrs,	Volume=
Routed	to Pone	d 49P : Pond #	#4	

0.013 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	2,073	98	3 Unconnected roofs, HSG B				
	2,073	98	100.00% In	npervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
5.0					Direct Entry,		

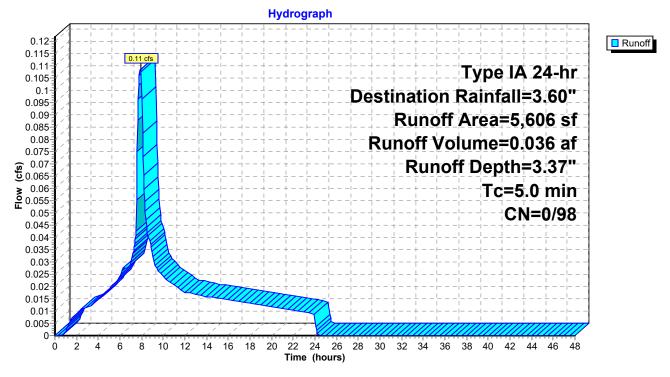
Subcatchment 8S: Apt Building 1

Summary for Subcatchment 9S: Apt Building 2

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pon	d 49P : Pond #	# 4	

0.036 af, Depth= 3.37"


Printed 2/21/2023

Page 68

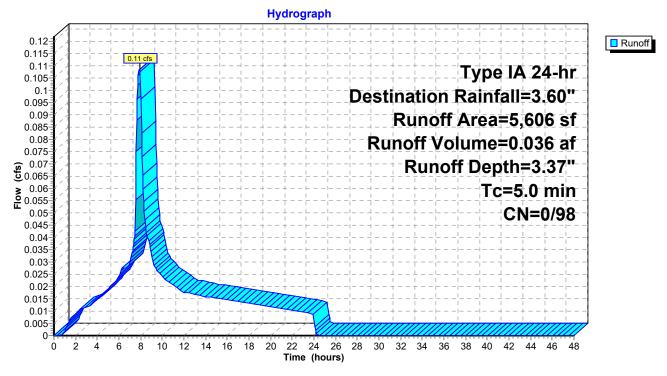
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	3 Unconnected roofs, HSG B				
	5,606	98	100.00% In	npervious A	vrea		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 9S: Apt Building 2

Summary for Subcatchment 10S: Apt Building 3

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 49P : Pond #	#4	

0.036 af, Depth= 3.37"

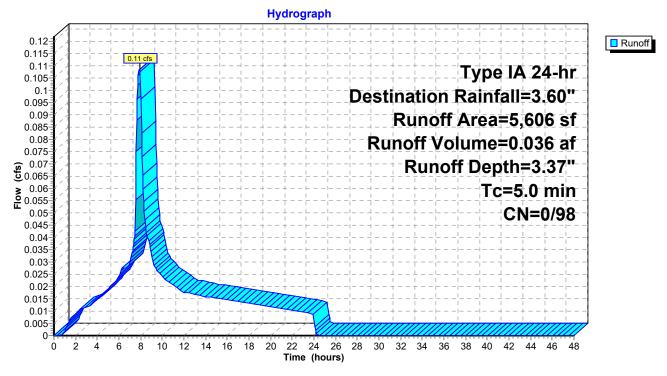
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description		
	5,606	98	Unconnecte	ed roofs, H	ISG B
	5,606	98	100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	1
5.0					Direct Entry,

Subcatchment 10S: Apt Building 3

Summary for Subcatchment 11S: Apt Building 4

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Ponc	146P : Pond #	#1	

0.036 af, Depth= 3.37"

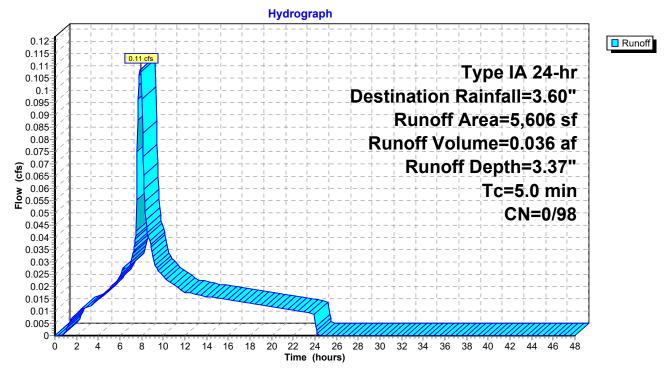
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)			
5.0					Direct Entry,		

Subcatchment 11S: Apt Building 4

Summary for Subcatchment 12S: Apt Building 5

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	46P : Pond #	#1	

0.036 af, Depth= 3.37"

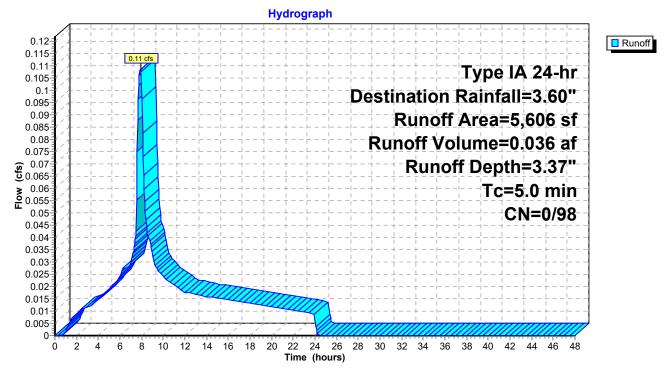
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 12S: Apt Building 5

Summary for Subcatchment 13S: Apt Building 6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Ponc	146P : Pond #	#1	

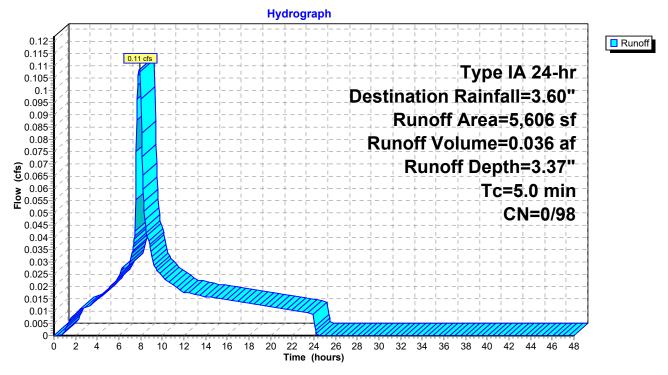
0.036 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 13S: Apt Building 6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	47P : Pond #	# 3	

0.036 af, Depth= 3.37"

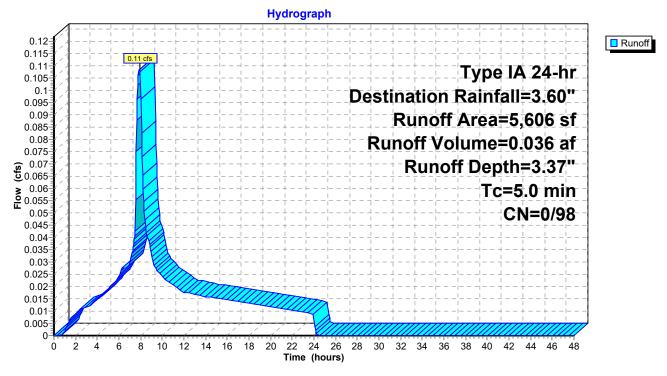
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	1		
5.0					Direct Entry,		

Subcatchment 14S: Apt Building 7

Summary for Subcatchment 15S: Apt Building 8

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 47P : Pond #	# 3	

0.036 af, Depth= 3.37"

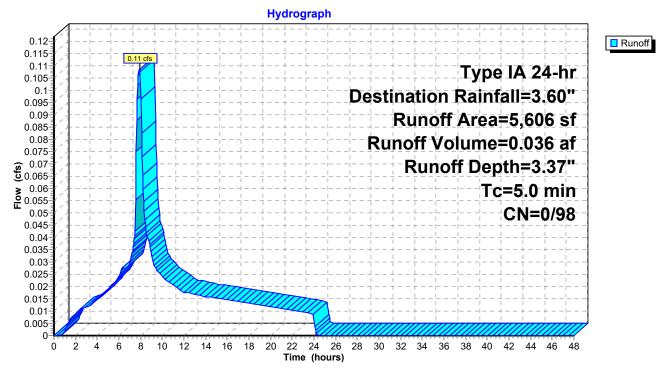
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)			
5.0					Direct Entry,		

Subcatchment 15S: Apt Building 8

Summary for Subcatchment 16S: Apt Building 9

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	#1	

0.036 af, Depth= 3.37"

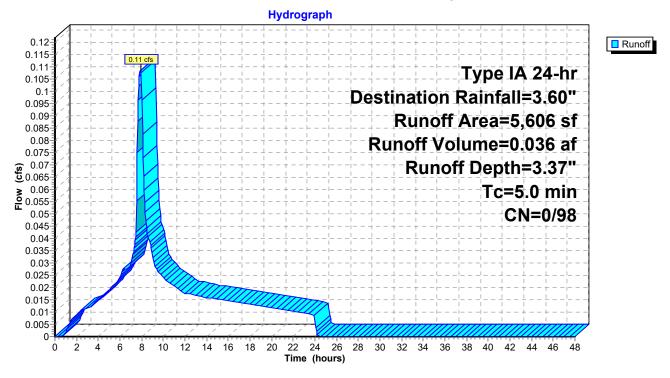
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	1		
5.0					Direct Entry,		

Subcatchment 16S: Apt Building 9

Summary for Subcatchment 17S: Apt Building 10

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pon	d 46P : Pond #	ŧ1	

0.036 af, Depth= 3.37"

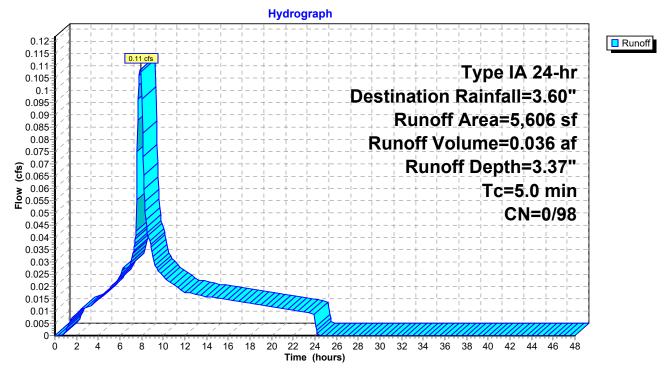
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description			
	5,606	98	98 Unconnected roofs, HSG B			
	5,606	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)		
5.0					Direct Entry,	

Subcatchment 17S: Apt Building 10

Summary for Subcatchment 18S: Apt Building 11

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	±1	

0.036 af, Depth= 3.37"

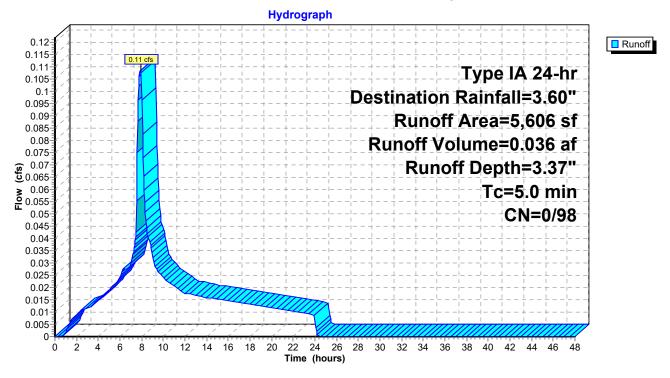
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	Unconnected roofs, HSG B				
	5,606	98	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment 18S: Apt Building 11

Summary for Subcatchment 19S: Apt Building 12

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pone	d 46P : Pond #	±1	

0.036 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

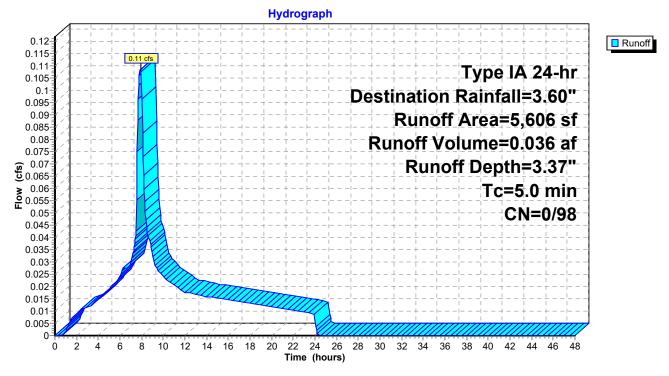
A	rea (sf)	CN	Description				
	5,606	98	Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)			
5.0					Direct Entry,		

Subcatchment 19S: Apt Building 12

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	46P : Pond #	<i>‡</i> 1	

0.036 af, Depth= 3.37"


Printed 2/21/2023

Page 79

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	3 Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
5.0					Direct Entry,		

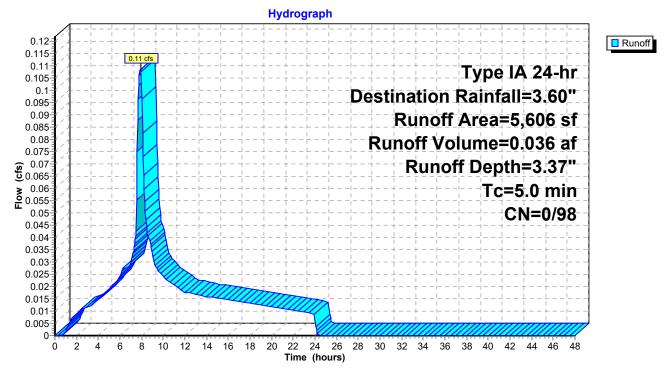
Subcatchment 20S: Apt Building 13

Summary for Subcatchment 21S: Apt Building 14

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	48P : Pond #	# 2	

0.036 af, Depth= 3.37"


Printed 2/21/2023

Page 80

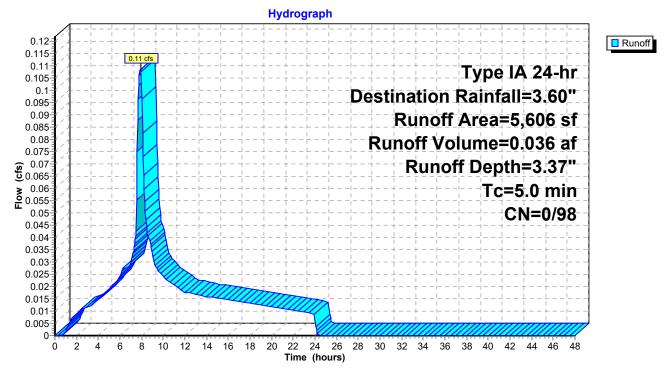
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description					
	5,606	98	Unconnecte	Unconnected roofs, HSG B				
	5,606	98	100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 21S: Apt Building 14

Summary for Subcatchment 22S: Apt Building 15

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 48P : Pond #	[±] 2	

0.036 af, Depth= 3.37"

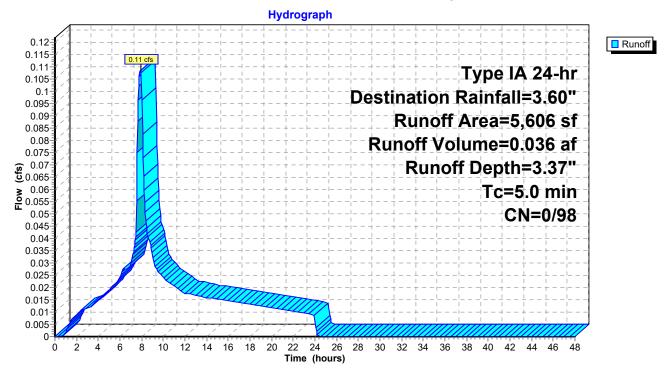
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description					
	5,606	98	Unconnecte	Unconnected roofs, HSG B				
	5,606	98	100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 22S: Apt Building 15

Summary for Subcatchment 23S: Apt Building 16

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.11 cfs @	7.90 hrs,	Volume=
Routed	to Pond	1 48P : Pond #	# 2	

0.036 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

A	rea (sf)	CN	Description				
	5,606	98	Unconnected roofs, HSG B				
	5,606	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)			
5.0					Direct Entry,		

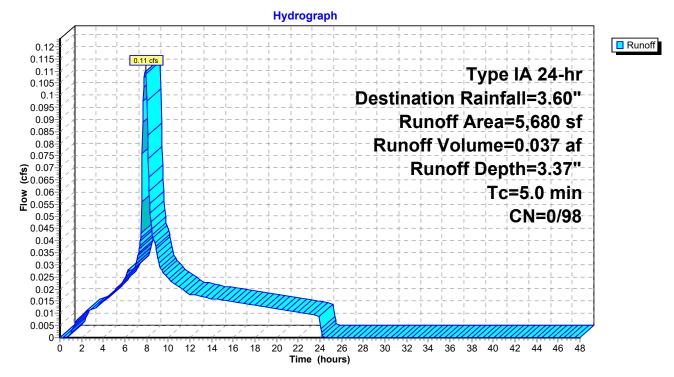
Subcatchment 23S: Apt Building 16

Summary for Subcatchment 26S: P1

0.037 af, Depth= 3.37"

Page 83

Includes area from common drive aisle that serves Village Green Hotel.


[49] Hint: Tc<2dt may require smaller dt

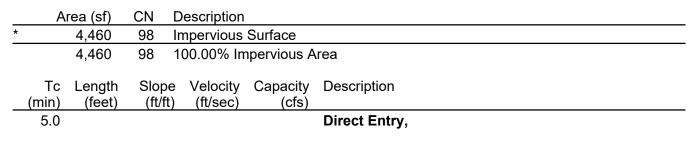
Runoff 0.11 cfs @ 7.90 hrs, Volume= = Routed to Reach 50R : Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

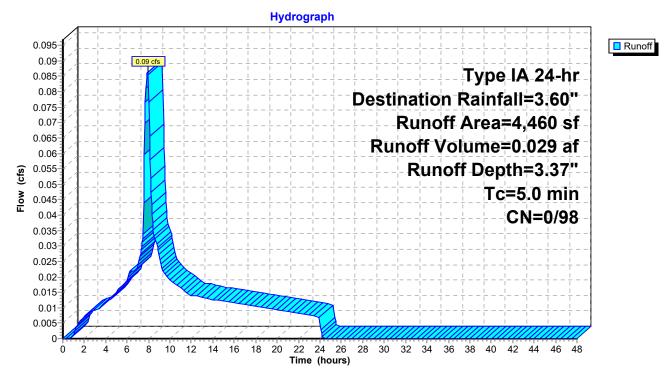
	A	rea (sf)	CN	Description		
*		5,680	98	Impervious	Surface	
		5,680	98	100.00% In	npervious A	Area
(r	Tc nin)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 26S: P1

0.029 af, Depth= 3.37"


Summary for Subcatchment 27S: P2

Includes drive aisle that serves Village Green Hotel.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.09 cfs @ 7.90 hrs, Volume= Routed to Reach 50R : Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

Subcatchment 27S: P2

Summary for Subcatchment 28S: P3

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.22 cfs @	7.90 hrs,	Volume=
Routed	to F	ond 48P : Pond #	2	

0.072 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

	11,250		Impervie																	
	11,250	98	100.00%	6 In	nperv	lous A	Area													
Тс	Length	Slope	e Veloo	ity	Cap	oacity	De	scri	ptior	า										
n)	(feet)	(ft/ft)	(ft/se	ec)		(cfs)														
.0							Di	rect	Ent	ry,										
					S	ubca	tchi	mei	nt 2	8S	: P	3								
						Hydro	ograp	h												
).24		+		_ _		 + + _	 	-		 +	+	L 	 			<u> </u> -	 +	_ -		R
).23	(/	0.22 cfs		¦-		$\frac{1}{1} \frac{1}{1}$			 	+						+ -	+			
).22).21				-		+ + - + -		·		+	1			Ту	ре	IA	24	1-h	r	
0.2			$\frac{1}{1}$ $\frac{1}{1}$			$\frac{1}{1} \frac{1}{1}$	- <u> </u>		De	sti	na	tio	n I	Rai	nfa	all=	3	60'	++	
).19).18						++-	- H	!												
).17	/			!-		 +-	-	·								11,2			1	
).16).15	(¦-		++-			F	Rui	no	ff \	/ol	un	ĩe≑	=0.0)7	2 a	f	
).14				-				-		+	R	ur	of	f D	ep	th=	3.	37'	11	
).13).12			+ H ·	-				-		+	+					=5.	ī			
).11	(++-				 						T ·	T			
0.1).09				-			- L	· ' -		+ +						CN	=0)/97	Ø	
).08						<u> </u>				+							 	·		
).07				-		+ + -	-	- 	 	+	+	 I	 		+	+-	+	i-		
).06).05	/1:::::					т — — т — 4 — — 4 —														
).04		+	-407	777	111	 +-				+	+	 	 		+	+ ·	+			
).03							\overline{m}	·'		<u> </u>		<u> </u>			<u> </u>	+ -	<u> </u> 			
).02).01		+	+	-		+ + -	-	1	 	+	+	 I	 		+	+ -	+	-		

Summary for Subcatchment 29S: P4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.14 cfs @ 7.90 hrs, Volume= Routed to Pond 48P : Pond #2 0.046 af, Depth= 3.37"

	7,128 7,128	98 98	Imper 100.00				Are	a												
Tc min)	Length (feet)	Slope (ft/ft		ocity sec)	Ca	pacity (cfs		Desc	ripti	on										
5.0	/			,			<u>ר</u>	Dire	t E	ntry	,									
					S	ubc	atc	hm	ent	293	5: F	9 4								
						Hyd	rogr	aph												
0.15			+		 			 	· -	 	 + 	 + 	 	 	 - — 	 + 	 + 	 	-	Runc
0.14		0.14 cfs						' 	· -	 			' 	-Tv	ine	A	-2		hr-	
0.13	1.4		<u>-</u>				<u> </u>	i l		est	ina	tic	'n					1	÷ 1	
0.12						 +				531						=7,				
0.11- 0.1-	/		<u>i</u>			$\frac{1}{1} = -\frac{1}{1}$	<u> </u>	 	· -	Du	÷	÷				-, =0.		÷		
0.00	,		+			+ +		 	· _i	NU	÷	i -	i	i i			i.	i		
0.09			-	i= = -i= I I		<u>+</u> + 					÷- F	u	101	¦}-∎J		oth:	1	1		
0.07-										1	i 		 		10	:=5	i.	i.	1	
0.06	,			 -		+	F		· _		; +	- - +	 	 	 	CN	N=(0/9	8	
0.05	.∕T = −i= = -				 	$\frac{1}{1}\frac{1}{1}$	-		· -¦	 	 	$\frac{1}{1}$	 		 	 	 	$\frac{1}{1}$	 	
0.04					 	$\begin{array}{c} 1 & 1 \\ + & - & - \\ 1 & 1 \end{array}$	- 	 	· _	 	+	 +	 	 	 	 	 + 	 	 	
0.03- 0.02-	しオートトラス							 	¦	$\frac{1}{1}$	$\frac{1}{1} = -$	$\frac{1}{1}$	 		 	<u> </u>	 	$\frac{1}{1} = -$		
0.02				- 					· _		+ 	+ 	 	 		- 	+ 	⊥ 	- 	
0-			1 1		1 1		1		////	////							///			

Summary for Subcatchment 30S: P5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.22 cfs @ 7.90 hrs, Volume= Routed to Pond 48P : Pond #2 0.074 af, Depth= 3.37"

	11,417	98		ervio																		
	11,417	98	100.	.00%	Im	perv	lous	s Ar	ea													
Тс	Length	Slope		eloci		Cap			Des	cri	ptio	n										
<u>(min)</u> 5.0	(feet)	(ft/ft	I) ((ft/sec	C)		(cfs	/	D:		F											
5.0									Dire	JCL	EU	uy,										
						S	ubo	ato	:hn	ner	nt 3	80S	5: F	9 5								
							Ну	drog	raph													
0.04			 + + 		 - 	 	+	 + + 	- 				 + 	 + 	 	 	 -	+	 + 	 + 	 - 	🗖 Runof
0.24- 0.23-	¥_+	0.22 cfs			_		+		-					 +	 			+		T	-	
0.22- 0.21-		i			-i	<u></u>	i	т — — і 4 — — і					т — — 4 — —	+ ⊥) A				
0.2- 0.19-					_		ц ц ц	 L	- .		De	sti	na	tic	'n	Ra	inf	all	=3	.60)"	
0.18-					-	 	+	 + +	- 			- F	kur	hot	f-A	re	a=	11	,41	7	sf -	
0.17- 0.16-	₽ ´,k		+		-i		i	† † + +				Ru	no	ff '	Vo	lur	ne	=0	.07	4	af	
0.15- <u> </u> 0.14-	- / '				-!	-i : -i :		† † + !					÷	÷				oth	÷			
(c) 0.14- 0.13- 0.12- 0.11-			+ ·		-i	 	+ 	+ + L L	- .				+ L	+ L			-1	;=5	+			
					-		+	 	-		 		 + 	+ 1	 			+	N=	+	- i	
0.1- 0.09-	*				_		+		-				+	 +	 	·	-		+	U/3		
0.08- 0.07-	= / `				-i		 +	т — — г + — — Р	i				τ +	+		; 	-i	+	+	 ↓	- -	
0.06 0.05	* / +				-¦			 L					і т — — Ц	 			-		 		- 	
0.04-						111	 + 777	 + +	-				 +	+	 			+	+	 +	-	
0.03- 0.02-					-!				$\overline{\mathbb{Z}}$					 - +	 	·	-i					
0.01- 0-		 	1 ////////////////////////////////////			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·														
	0 2 4	6 8	10 1	12 14	16	18	20	22 Time		26	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 31S: P6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.15 cfs @ 7.90 hrs, Volume= Routed to Pond 46P : Pond #1 0.049 af, Depth= 3.37"

	7,570 7,570	98 98		<u>ervio</u> .00%				: Ar	еа													
Tc min)	Length (feet)	Slop (ft/f	e V	elocit	ty		bacit (cfs	y		scri	ptio	n										
5.0	(ieet)	(101	<u>() (</u>	10300	<i>.</i>)		(013	/	Dir	ect	En	try,										
						Sı	ubc	ato	chr	nei	nt 3	315	6: F	P 6								
							Нус	lrog	rapl	h	1	1	1	1	1	1	1	1	1			1
0.16		-ii			-i i					i I I		; 	, T I 4	T — — I L — —		i I	-i 	 		- - - -		Runo
0.15		0.15 cfs			i _!					i !	i .!	 			i 	T	inc	- 1A	-2	 _	hr -	
0.14					-i					; - 	Da		no	tio				all		1	1 1	
0.13 0.12				L	_ 			L	' -	 	De		+	+			-!	+	+			
0.12-	/1				- 		 		 	 						1	1	=7,		1		
0.1-			+	· 	- 	- · 	+ +		-	 	 	Ru				i.	1	=0.		1	. 1	
-										:			F	Rur	nof	fC)ep	oth	=3	.37	, , , , , , , , , , , , , , , , , , , 	
0.09 0.08					 _	 	 		 -	 	 	 	 +	 +	 	 	Тс	;=5	.0	mi	in	
0.07				<u> </u>	 _				 	 	 .!	 !	 <u> </u>	 	 	 	 	CI	N=(0/9	8	
0.06					-1					 		i 1	i T	i T	 	 			- 			
0.05				L	- 	- 			 	 	 	 	- 	 	 	 	- · 	- 	 	⊥ 		
0.04 0.03	. 1				-¦		+ + 			 	¦	 	<u> </u> 	<u> </u> 			¦ ·	<u> </u>	$\frac{1}{1}$	$\frac{1}{1}$	¦	
0.03			+							 	i !	i — — -	†	+	 	i !	-i	+ ·	+	+ !		
0.01-				L I I	- ' 	 			4		 	+ 	+ 	+ 	 	 	-' 	 	+ 	 		
0-		· _ / _ / _ / _ / _ / _ / _ / _ / _ / _	· _ / · · · ·	, franta	<u></u>		·	· / · · ·	24	26	Щ.	Щ.	32	34	Щ.	38	40	Щ	Щ.	Щ.	Щ	

Summary for Subcatchment 32S: P7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.14 cfs @ 7.90 hrs, Volume= Routed to Pond 46P : Pond #1 0.046 af, Depth= 3.37"

	7,142	98 98						Are														
	7,142	90	100	0.00%	0 1111	perv	lous	Are	а													
Тс	Length	Slop		/eloc		Cap	pacity		Desc	rip	tion											
min)	(feet)	(ft/f	t)	(ft/se	ec)		(cfs	/														
5.0								1	Dire	ct E	Entr	у,										
						Sı	ubca	atc	hm	en	t 32	2S:	P7	7								
						-	Hyd															
	<u></u>		+ +				+ +	+		-		- + -	-+-	-		 		+	+	+		
0.15	コンオートトート	0.14 cfs		<mark> </mark>	¦		$\frac{1}{1} \frac{1}{1}$	-				- + -		-		 	 		 			Runof
0.14	- /					 	+ +	⊢	- ·	!-		- + -	- + -	-		Τv	pe	÷ IA	\ -2	4- ł	hr-∣	
0.13	= _1				¦					 -)es	tin	at	ia		_	-				1	
0.12	- <u>/</u>					 	+ +	+	- ·	!-								1	1	1	. 1	
0.11	目したったって			<mark> </mark>			$\frac{1}{1} \frac{1}{1}$	-	- ·	¦-			- ÷ -				<u> </u>	=7		÷		
0.1	: /					 	 +	-	I	-	\mathbf{R}	un	of	f_\	/0	lun	ne	=0	.04	6 6	af	
(s 0.09	1 /1				¦		$\frac{1}{1} \frac{1}{1}$	-				- + -	Rı	JŅ	of	f D	ep	th	=3	.37	/	
(1009 0.08 0.07							+ +	F	I	!-		- + -	-+-	 - 		 	Τc	;=5	5.0	m	in-l	
	1,1				¦		$\frac{1}{1} \frac{1}{1}$	İ		¦-		- 1 -	- 1 -	 				i.	N=	i.	i	
0.06							+ +		_ ·	-		- + -	-+-	- 		 	 		+			
0.05	: _1						$\frac{1}{1}\frac{1}{1}$					- + -	- + -					<u> </u>	<u>i</u> <u>-</u>	$\frac{1}{1}$		
0.04					 	 	 + 	- 	- ·	-		- + -	- + -	 - - 		 	 ·	+	+	 		
0.03	: _ 1 = = i = z		+							!-		- + -	- + -	!		 		<u> </u> 	<u> </u> 	 		
0.02				 						- 		- + -	- + -	- 			 	+	+	- 		
0.01	=		<u> </u>		1	 / /										-	-	-	-	-		
0	0 2 4	6 8	10	12 14	1 16	18	20 2	22 2	24 2	62	8 3	3	2 3	4	36	38	40	42	44	46	48	

Summary for Subcatchment 33S: P8

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.15 cfs @	7.90 hrs,	Volume=
Routed	to Pond	46P : Pond #	#1	

0.049 af, Depth= 3.37"

	7,675		mpervious 100.00% Ir			rea												
Tc nin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Cap	oacity (cfs)	Desc	riptio	on										
5.0						Dire	ct Er	ntry,										
				S	ubcat	tchm	ent	338	6: P	8								
					Hydro	graph												
0.16							 						 				 	🗖 Rune
0.10	/	0.15 cfs			$\frac{1}{1} \frac{1}{1}$		¦					Тч			2	1.k		
0.14										1!-		-	-					
0.13					$\frac{1}{1} \frac{1}{1}$	- <mark> </mark> _	ע	esti						+				
0.12	/ i i /		 -	i 	i i + + -	 - -	1	i +	Ru	nc)ff	Ar	ea=	=7,0	67	5 s	sf	
0.11	 			·			 !	Ru	no	ff-\	Vol	un	ne=	=0.()4	9 a	f-	
0.1					$\frac{1}{1} \frac{1}{1} - $				- R	ur	nof	f D	ep	th≒	3.	37	₽ ₽	
0.09					++-				+ + 		 -		+	=5.	+			
0.07							!	 	L J 	L								
0.06					$\dot{1} \dot{1} -$!	i i					CN	=6	J/9	0	
0.05					++- 				+ + 					+ 	+ L			
0.04				 			 	 					 		 		I I	
0.03			Um		+-				 -		 		+	+	+		 	
0.02							!	 			 			 	1		 	
0.01				1		TY A	I	1	1 						1			

Summary for Subcatchment 34S: P9

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.12 cfs @	7.90 hrs,	Volume=
Routed	to Po	ond 46P : Pond #	±1	

0.041 af, Depth= 3.37"

	Area (sf)	CN E	Description											
	6,421		mpervious											
	6,421	98 1	00.00% In	npervious A	rea									
T (mir	•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descr	iption								
5.	0				Direct	Entry	,							
				Subcat	tchme	nt 34	S: P	9						
				Hydro	graph									
						 					,		_!	Runoff
0.	.13	0.12 cfs		+		-	 				1 1 1	 -		
0.	.12			+ + -	 -		 	 +_ = - -		ype				
0.	.11-1				 	Dest	÷				· - + - ·	- .		
(0.1			i i i 	 	i i 	÷			′ea=	· _ • _ ·	-÷		
0.	.09				- L L	Rι	ino	ff V	'olui	me=	0.04	41	af	
(i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i	.08				 -	 -	R	lun	off [Dept	h=3	3.3	7'''	
Flow (cfs)	.07			++-	 	 -	 +	 + -	 	Tc=	=5.0	m	in	
й 0.	.06				 	 -	 				CN=	=0/9	98	
0.	.05			i i i 		i i -!!	i 							
0.	.04				- L L	; 	; 	, , LL	!	; 	,	_ L		
0.	.03				 -	 -	 +	 -	 	-l + -	- +	_ +	 	
0.	.02	 +-				 -	 +	 + -	 	 - +-	 - +	 - +	 -	
0.	.01										-	-	-	
	0 2 4	6 8 1	0 12 14 16	5 18 20 22	24 26	28 30	32	34 3	6 38	40 4	2 44	46	48	
					ne (hours)									

Summary for Subcatchment 35S: P10

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.12 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 46P : Pond #	±1	

0.040 af, Depth= 3.37"

	6,146 6,146		mpervious 100.00% li			rea												
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)		acity (cfs)	Des	cripti	on										
5.0						Dire	ct E	ntry	,									
				Sub	ocate	chm	ent	35S	: P	10								
					Hydro	graph				1	1		1			1		1
0.13-					- T		, 	 	T I I									Runc
0.12-		0.12 cfs			 		 	 		 	 	Ту	pe	IA	2	4-l	hr_	
0.11-	/ /						D	est	ina	tic		-	-			· · · · ·	· 1	
0.1-	/						!		1		1	-	ea			1	- I	
0.09-	: 사는							Ru										
0.08 چ									i i	í.	í.	i.)ep			i i	- I	
Cts) (cts) (+	- -	!			 	 - 	 	1 - 1	=5		1	1	
	×			+	+				+	' +	' 	 		CN		i.	i	
0.05-	x		-+	+	+		!		+	- - +	 	 		+		 +	-	
0.04-	, / ii				+				+	 +	 	 	 			 +	-	
0.03-					+		 	 	 	 +	 				 	 	 - 	
0.02	i ////	+						 	+ +	 	 	 			 	 	 	
0.01-						-	-	-									-	
0-	W.		Á A A A A A A A A A A A A A A A A A A A	ŕ, í	ín ní	24 2	26 28	30	32	34	36	38	40	42	///	Щ.	48	

Summary for Subcatchment 36S: P11

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.14 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 46P : Pond #	#1	

0.048 af, Depth= 3.37"

	7,429	98	100.0	0% In	nper	ious /	Area	l												
Tc	Length	Slope		ocity	Ca	pacity	D	escri	iptio	n										
nin) 5.0	(feet)	(ft/ft) (II/	sec)		(cfs)	D	irect	En	trv.										
0.0					•					-										
					Sı	ıbca			nt 3	6S	: P	11								
			++			Hydr	ogra	ph 	-	+	+	+					+	+		1
0.16		 				$\frac{1}{1} \frac{1}{1}$	 <mark> -</mark> -	 _	 -	 	 	 	 	 		 	 	 - 	 	🗖 Run
0.15	x	0.14 cfs]			+ + -		-	-	·		+						і Я-Т		
0.14			· L				L _			 		 	 		pe					
0.13	/		 			$\frac{1}{1} \frac{1}{1} - $	<mark> </mark> -	-	De	st	ina	tic	n-	Ra	inf	all	=3	60);	
0.12	x x		 +			+ + -			 -	 ·	Rι	ind	off	Ar	ea	=7,	42	9 :	sf-	
0.11				-		$\frac{1}{1} \frac{1}{1}$	<mark> </mark>	-¦	- 	Rīi	1		1	lūr				1		
0.1	*		+			 + -	 	 -	-		+	+					+	+		
0.09			<u>-</u>			$\frac{1}{1} = -\frac{1}{1} =$	L _	-			<u> </u> _ _	<u>u</u>	101	fD				1	1	
0.08								-	-¦	 ·	 	 	 		Тс	=5	.0	mi	n	
0.01						+ + -		-	-1		+	+				CI	1=()/9	8	
0.06	/					$\frac{1}{1} \frac{1}{1} - \frac{1}{1}$			-¦	<u> </u>	<u>+</u>	<u> </u> 		¦			<u> </u>	<u>+</u>		
0.03				i⊢ – –i– i i	i	+ + -	 I	- i	-i i	- -	+ 1	+ i	i i	-i I	-i		- + I	+ I	i	
0.04	/								-¦	! !	<u> </u>	<u> </u>		¦			<u> </u>	<u> </u>		
0.03					111		·	-	-i		+ 1	+ 1	 				- I	+ 1		
0.02							Щ	<u> </u>	-1		1 – – !	⊥ !		 	.	L	L	⊥ !		
0.01		· · · · · · · · · · · · · · · · · · ·	· · ·	<u> </u>	· · ·	· · ·	\rightarrow	Îт		////	////						1			l

Summary for Subcatchment 37S: P12

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.18 cfs @ 7.90 hrs, Volume= Routed to Pond 47P : Pond #3 0.060 af, Depth= 3.37"

7.	rea (sf) 9,368	98 I	Description mpervious	Surface								
	9,368	98	100.00% In	npervious A	rea							
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descrip	tion						
5.0	(ieet)	(1011)	(11/360)	(013)	Direct	Entry,						
				Subcat	chment	37S	: P12					
				Hydro	graph							
0.2 0.19						·			 			[Runc
0.18							 	- - -	уре	IA-	24-h	r
0.17 0.16				+ + - I I I I	- - -	Desti	natio	on R	ainf	all=:	3.60'	IU -
0.15	/			+ + -			Run	off A	rea	=9.3	68 s	f
0.14 0.13							noff					
0 12					- - - -	- - -		noff	- i		i i	
0.11 0.11 0.09				$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$								
0.09					- - - !!-		i i ! !			i i) mir	
0.08							 	- 	!	CN	=0/98	5
0.07 0.06				+ + -	- - 	·	+ +	- 	 	+ + _ 		
0.05							+ + +	 			- + -	
0.04		+		+-		·	 + +	-		+-	-+	
0.03 0.02						·	т — — - — -	-	i	г — - т — I I I		
0.02					-	·			,			
0-		1 1	1 1 1	1 1 1 1								

Summary for Subcatchment 38S: P13

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.11 cfs @ 7.90 hrs, Volume= Routed to Pond 47P : Pond #3

0.036 af, Depth= 3.37"

	5,595		mper∖																
	5,595	98 ⁻	100.00)% In	nper	/ious	Area												
Тс	Length	Slope		ocity	Са	pacity	De	escri	ptio	n									
n)	(feet)	(ft/ft)	(ft/s	sec)		(cfs)													
5.0							Di	rect	En	try,									
					Sı	ubca	tchı	ner	nt 3	8S	: P	13							
						Hydr	ogra	bh											
0.12							L - 	- -		 	↓ · ·	+	 	 	·/ -	+ 			
.115 0.11		0.11 cfs				++		- i	·i	i	·	 +		Τ.	(DC) IA	5	τ λ-ι	
105 0.1	· /			¦-				-i					 	-				1	
.095	(-		$\frac{1}{T} = -\frac{1}{T}$		-	De	sti	na	tio	n	Ra	inf	all	=3	.60)
0.09	(<u> </u>			$\frac{1}{1} = -\frac{1}{1}$	<u>L</u> -	- <u> </u>			Rı	inc	off	Ar	ea	=5,	59	5	sf
.085 0.08	/			!-		++-		- -				1			1			÷	
.075				- 				_	.i	πu		1			1	=0.		1	
0.07 .065			r L			т — — т : 		- _ !	1	1	R	lur	lof	f D)ep	oth	=3	.37	7 40
0.06 .055						++		-	 	 	 +	+	 	 	Тс	:=5	0	mi	in-l
.055 0.05								-¦	'	; ! !		ή ⊥				i		T	
.045	(-	-		 +-		-		 	 	 +	 			U		0/9	10
0.04	<´_+ <u>-</u>			_		$\frac{1}{1} = -\frac{1}{1}$	<u> </u> -	-			<u> </u>	<u> </u> 				<u> </u>	<u> </u> – –	<u> </u> 	
.035).03				!-		++-		- - !	·	+ 	+	+	 	 	·	+	+	+	!
.025	()						L -	_!	 	 	 	 	 	 	 .	 	 		
0.02					TT			-i	i	; ;	- 	; +	, 	;	- 	+	+	- 	
.015 0.01				-			\square	<u> </u>	 	i		 +	 				 +	 +	
005		<u> </u>				<u> </u>	-	hm	-		1	-		-	-			-	
0-) 2 4	6 8 1	// / / / / / / / / / / / / / / / / / /	14 1	4	20 2	<mark>/ </mark> 2 24	26	28	30	32		36	38	40	42	44	46	48

Summary for Subcatchment 39S: P14

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.09 cfs @ 7.90 hrs, Volume= Routed to Pond 47P : Pond #3

0.031 af, Depth= 3.37"

	4,779	98	Imper																	
	4,779	98	100.0	0% Ir	nperv	ious /	Area													
Тс	Length	Slope	e Vel	ocity	Са	pacity	De	escri	ptio	n										
in)	(feet)	(ft/ft		/sec)		(cfs)														
5.0							Di	rect	En	try,										
					-		_				_									
					Sı	ubcat	chr	ner	nt 3	9S	: P	14								
						Hydro	ograp	bh												_
						++-		- 	 	 	 +	 +	 	 	 - 	 + 		 	- 	Ru
0.1 0.095		0.09 cfs	+ I	- 		++-	- H -	-	 	+ 	+	+	 	 	- 	+ +		+	-	-
0.095						++-		_		 	† : ! :	+	 	T١	pe) IA	2	4- ł	hr	_
).085						· · ·			D -	-41			- 		. –	all				
0.08	 			!-		<u>+</u> <u>+</u> _		_!	De		+	+						+		_
0.075	(- <u>-</u> -			 	Rι	inc)ff-	Ar	ea	=4,	77	' 9 :	sf -	-
0.07	() L - J			i_		· · · · ·	- <u>L</u> -	-i	i 1						1	=0.				-
).065				_ 	 	$\begin{array}{c} + & - & - & + & - \\ + & & + & + \end{array}$	- ⊢ - I	- 		NU	1	1	1	1	1	1 1		1	1	-
0.06).055			+ I	- 	 I	+ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $-$ -	- ⊢ - I	-	 	+ 	;-R	Rur	lof	f D)ep	oth	=3	.37	7¦=	-
0.05			+			++-	- H -	- 		 	+	+	 	 	Tc	:=5	0	m	in	_
0.05).045						$\frac{1}{1} \frac{1}{1}$. – – –	 		<u> </u>	 			i i		i.	i.	-
0.04	·					$\frac{1}{1} \frac{1}{1}$										CN	1=(0/9	18	-
0.035	()			<u> </u>						!		<u>i</u> – –						Ļ		-
0.03	(44-	_ L _	_!	!			<u></u>		!	-!	<u> </u>		÷		-
).025	(++-		-!			+	+			-!			+	- !	-
0.02	,	/+	- VD			++-		-			+	+				+ +		+	-	-
0.015				411	\square	TIT	777	-			+	+				+ +		+	-	-
0.01							Щ	1			+	+				+ +		+	-	-
.005				<u> </u>		<u> </u>		Im	-		-		1	-	-			- 	-	-

Summary for Subcatchment 40S: P15

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.09 cfs @ 7.90 hrs, Volume= Routed to Pond 47P : Pond #3 0.031 af, Depth= 3.37"

	4,741		Imperviou															
	4,741	98	100.00%	Impe	ervious A	Area												
Tc min)	Length (feet)	Slope (ft/ft)			apacity (cfs)	De	scrip	ion										
5.0				,		Diı	ect E	Intry	,									
				ę	Subcat	chn	nent	40S	6: P	15								
					Hydro	ograp	h											
0.1 0.095		+ + - <u>0.09 cfs</u>		-	+ - + - + - + - + - + - + - +			 		$\begin{vmatrix} r \\ r \\ r \\ r \\ r \\ r \\ r \\ r \\ r \\ r $		 				 	- - - - - - - - - - - - - -	Runo
0.09 0.085 0.08							- 	est		+		Ra	!	all	=3.	60)**	
0.075 0.07 0.065					+ + - - + + - + - + -			Ru				Ar Iun						
0.06					+-+-					1	i.	f D						
0.05 0.045					$ \frac{1}{1}$	- -						 	Tc	=5 CN		i.	1	
0.04 0.035 0.03									⊥ ⊥	$\frac{1}{1}$ $\frac{1}{1}$						<u>]/</u> 3 _ 	0	
0.025 0.02					- + - + - - + - + - - + - + -			 	+ + +	+ + +		 		+ + +		 + +		
0.015 0.01 0.005							- - 	 	+ + +	 + T		 		+		 		
0	0 2 4		10 12 14	16	18 20 22	24	26 2	3 3	32	24	36	38	40	42	<u>,,,,</u> 44	46	48	

Summary for Subcatchment 41S: P16

[49] Hint: Tc<2dt may require smaller dt

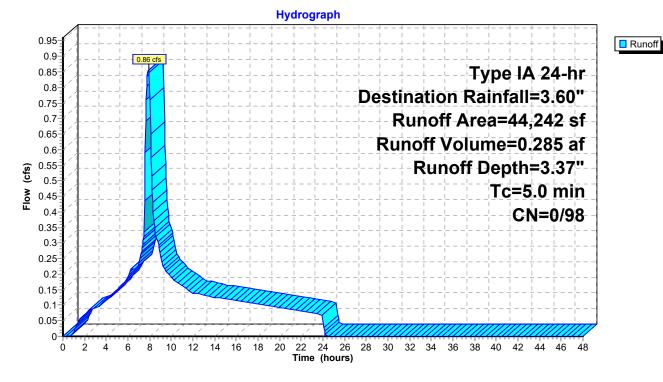
Runoff	=	0.17 cfs @	7.90 hrs,	Volume=
Routed	to Pond	d 47P : Pond #	# 3	

0.058 af, Depth= 3.37"

	8,967		Imperv																	
	8,967	98	100.00	% In	perv	ious	Are	а												
Тс	Length	Slope			Cap	bacity	′ C)escr	iptic	n										
nin)	(feet)	(ft/ft) (ft/s	sec)		(cfs)														
5.0							C)irec	t En	try,										
					Su	bca	tch	imei	nt 4	1S	: P	16								
						Hydr	ogra	aph												
0.19				¦- ·	i i	+ + - + + -		¦	-i -i	; ;	+ - 	+ +	 	; ;	; :	i i i i				Rur
0.18	(0.17 cfs				$\frac{1}{1} \frac{1}{1} - \frac{1}{1}$	-				$\frac{1}{1}$	$\frac{1}{1}$	 		'n) IA	2	 		
0.17				¦- ·		++- 		¦	-¦	;	 1	+							· ·	
0.10				_I	·	т — — т - I I I		_I	De	sti	na	tic	n	Ra	inf	all	=3	.60)''	
0.14				¦		т — — т - ¦ — — ¦ -				 	Rι	inc	off	Ar	ea	=8,	96	7	sf	
0.13				¦										1		=0.		1		
0.12				 		<u> </u> -	-				÷	÷						÷		
0.11				¦- ·		+ + - 		¦	-i	i	; - F	cu r	101	1		oth		1		
0.11 0.1 0.09				 				_I				T			TC	:=5	.0	m	n	
0.08				¦						 		 		 		CN	1=(0/ 9	8	
0.07	($\frac{1}{1} \frac{1}{1} - \frac{1}{1}$		<mark> </mark>	-	 	 	$\frac{1}{1}$	 			$\frac{1}{1} \frac{1}{1}$		$\frac{1}{1}$		
0.06	[/					+ + -					<u> </u> 	$\frac{1}{1} = -$				$\frac{1}{1} \frac{1}{1}$		 		
0.05 0.04				¦- ·		+ + - 		¦	-i ·	;		+	 			<u>+</u> +		÷		
0.04			× ())	\overline{m}	1	<u> </u>	 I	 		 	 	 	 					т — — I	 	
0.02							11					T			!			т — — 		
0.01					 			Am												
0 =) 2 4			 		20 2	<u>ří</u> 2 2	4 26	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 50S: Existing Buildings

Includes the roofs from existing buildings 1-8 and some adjacent sidewalks for areas within master plan (apartments). See existing drainage basin map for corresponding areas.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.86 cfs @ 7.90 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.285 af, Depth= 3.37"

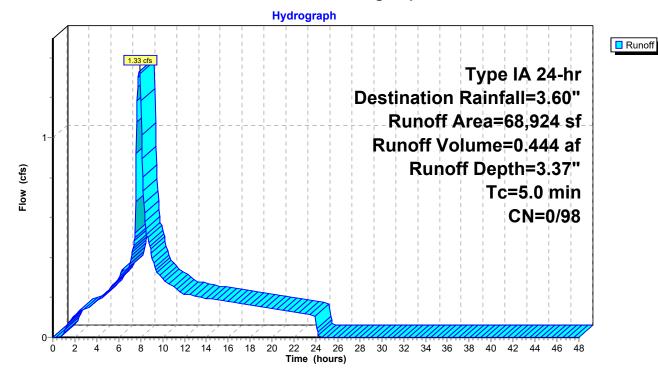
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

	A	rea (sf)	CN I	Description		
*		44,242	98 I	mpervious	Roof & Adj	jacent Sidewalk
		44,242	98	100.00% In	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 50S: Existing Buildings

Summary for Subcatchment 51S: Existing Impervious Areas

Includes existing impervious pavement within the new master plan development area (apartments). See existing drainage basin map for corresponding areas.

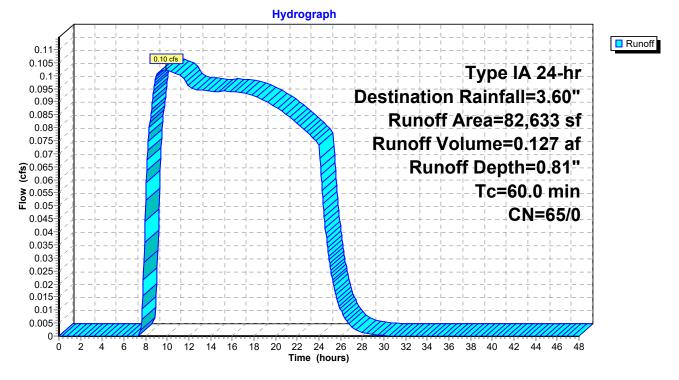

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.33 cfs @ 7.90 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.444 af, Depth= 3.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

	A	rea (sf)	CN I	Description		
*		68,924	98 I	mpervious	pavement	and sidewalk
		68,924	98 ⁻	100.00% In	npervious A	Area
	Тс	5		Velocity		Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 51S: Existing Impervious Areas


Summary for Subcatchment 52S: Existing Landscape Area

Runoff = 0.10 cfs @ 9.91 hrs, Volume= 0.127 af, Depth= 0.81" Routed to Reach 53R : Existing Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

Area (sf)	CN	Description		
82,633	65	Woods/gras	ss comb., F	Fair, HSG B
82,633	65	100.00% P	ervious Are	ea
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description
60.0				Direct Entry,

Subcatchment 52S: Existing Landscape Area

Summary for Subcatchment 94S: Pond #3

[49] Hint: Tc<2dt may require smaller dt

0.055

0.035 0.03 0.025 0.02 0.015 0.01 0.005 0-0 ż 4 6 8 10

(cfs) 0.05

Flow 0.045 0.04

Runoff	=	0.08 cfs @	7.90 hrs,	Volume=
Routed	to Pond	47P : Pond #	±3	

12 14

16 18 20 0.028 af, Depth= 3.37"

Runoff Depth=3.37"

Tc=5.0 min

36 38 40 42 44 46 48

CN=0/98

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Destination Rainfall=3.60"

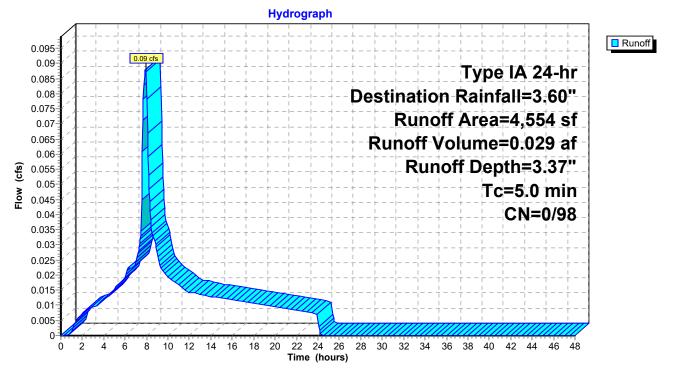
Area (sf)	CN Description	
4,349	98 Water Surface, HSG B	
4,349	98 100.00% Impervious Area	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
5.0	Direct Entry,	
	Subcatchment 94S: Pond #3 Hydrograph	
0.09		
0.085		e IA-24-hr
0.08	Destination Rain	
0.07	Runoff Area	=4.349 sf
0.065	Runoff Volume	

22 24 26

Time (hours)

28 30

32 34


Summary for Subcatchment 95S: Pond #1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.09 cfs @ 7.90 hrs, Volume= Routed to Pond 46P : Pond #1

0.029 af, Depth= 3.37"

Area (sf)	CN	Description							
4,554	98	Water Surface, HSG B							
4,554	98 100.00% Impervious Area								
Tc Length (min) (feet		7 1	pacity Description (cfs)						
5.0	5.0 Direct Entry,								
Subcatchment 95S: Pond #1									

Summary for Subcatchment 96S: Pond #2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.90 hrs, Volume= Routed to Pond 48P : Pond #2 0.018 af, Depth= 3.37"

	2,830		Vater Surf													
	2,830	98 1	00.00% Ir	npervio	us Are	ea										
Тс	Length	Slope	Velocity			Descri	ption	1								
min)	(feet)	(ft/ft)	(ft/sec)	(0	cfs)	D :	Ent									
5.0						Direct	Enti	r y ,								
			;	Subca	tchm	nent s	96S:	Po	nd a	#2						
				H	ydrogi	aph										
0.0	6-1							· -			 					$\frac{1}{1}$
0.05		0.05 cfs		+-+	 			· _	¦	 	+ T v		IA	2/	l_h	
0.0	5-4	+		++			Des		atic							
0.04	, 1 i - ·	! +		++			Des	!-	unc		+					
0.04									off							
	1 . +¦- ·			$\frac{1}{1}\frac{1}{1}$				· '- ·	'		<u>+</u> – –		' -			
0.03 0.03	_			 			$\frac{1}{1} = -\frac{1}{1}$	·	Rur		T	_ _		- T		
0.0	1 /			+ +				·			; +	ri-	=5.(- T		T T
0.02	5-f 1 /	1 +		+ +	 	 	 + +	· -		; +	; +	' -	CN	=0	/9	ð
0.02	2				 			 	 	 	 					
0.01	5									1	1					
0.0	1									1	 					
0.00	5								: 		 			 		
									π	1				\overline{m}		

Tc=5.0 min

28 30 32 34 36 38 40 42 44 46 48

CN=0/98

Summary for Subcatchment 97S: Pond #4

[49] Hint: Tc<2dt may require smaller dt

0.014 0.012 0.01 0.008 0.006 0.004 0.002 0-0 ż 4 6 8

Flow 0.016

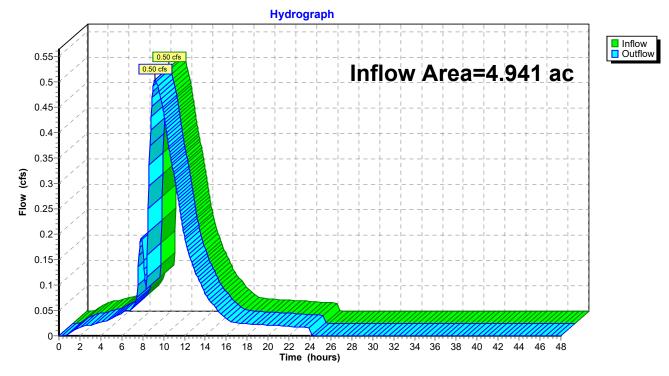
7.90 hrs, Volume= Runoff 0.03 cfs @ Routed to Pond 49P : Pond #4

10 12 14 16

18 20 22 24 26

Time (hours)

0.010 af, Depth= 3.37"


/	Area (sf)	CN [Description									
	1,585	98 \	Vater Surfa	ace, HSG	В							
	1,585	98 ´	100.00% In	npervious	Area							
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		ription						
5.0					Dire	ct Entry	,					
Subcatchment 97S: Pond #4												
	/ !		L	пуu ++			_	+	L		- + +	1
0.0	34		·	 		<u> </u> <u> </u> -	_!!	$\frac{1}{1}\frac{1}{1}$	<u> </u>	 	- <u>+</u> <u>+</u>	Runoff
0.0	32	0.03 cfs		- -								
0.	03	-i+	·	+ + -		· - + + -		i i ++	Гуре	AI a	24-hr	
0.0	28		 L .	 	 -	-Dest	inatio	h-R	ainf	all=3	8-60"-	
0.0	26		·	 					1	1		
0.0	24		·			·				- -	85 sf	
0.0	22			+ + -	-	Rı	unoff \	Volu	Ime	=0.0	10 af	
.0 0.0 (cts)	02						Rur	noff	Dep	th=3	8.37" -	
0.0	''비 샤!			+ + +	!! -		-!!	<u>+</u> +				1

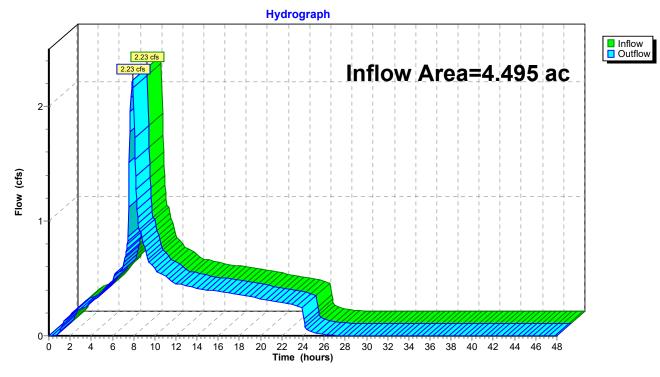
Summary for Reach 50R: Discharge

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	4.941 ac,10	0.00% Impervious,	Inflow Depth =	0.44"	for Destination event
Inflow	=	0.50 cfs @	9.18 hrs, Volume	= 0.182	af	
Outflow	=	0.50 cfs @	9.18 hrs, Volume	= 0.182	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 50R: Discharge


Summary for Reach 53R: Existing Discharge

Page 107

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	4.495 ac, 5	7.80% Impervious,	Inflow Depth =	2.29"	for Destination event
Inflow	=	2.23 cfs @	7.91 hrs, Volume	= 0.856	af	
Outflow	=	2.23 cfs @	7.91 hrs, Volume	e= 0.856	af, Atte	en= 0%, Lag= 0.0 min

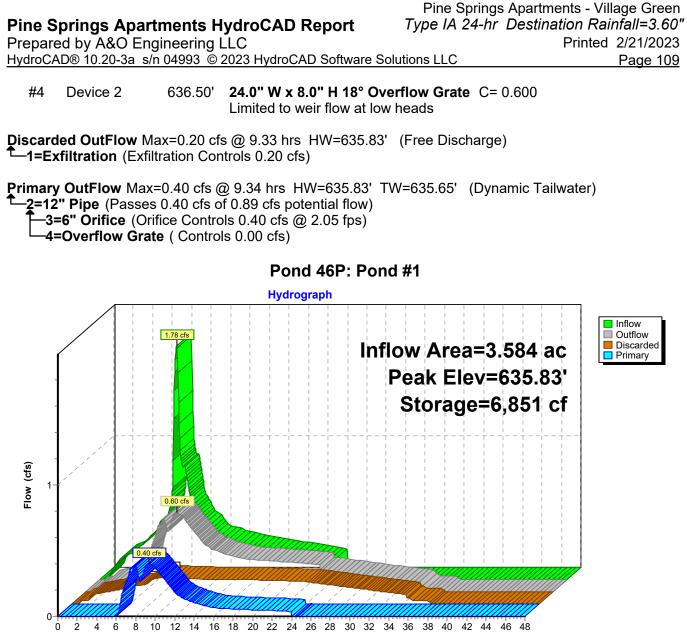
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 53R: Existing Discharge

Pine Springs Apartments - Village Green Pine Springs Apartments HydroCAD Report Type IA 24-hr Destination Rainfall=3.60" Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

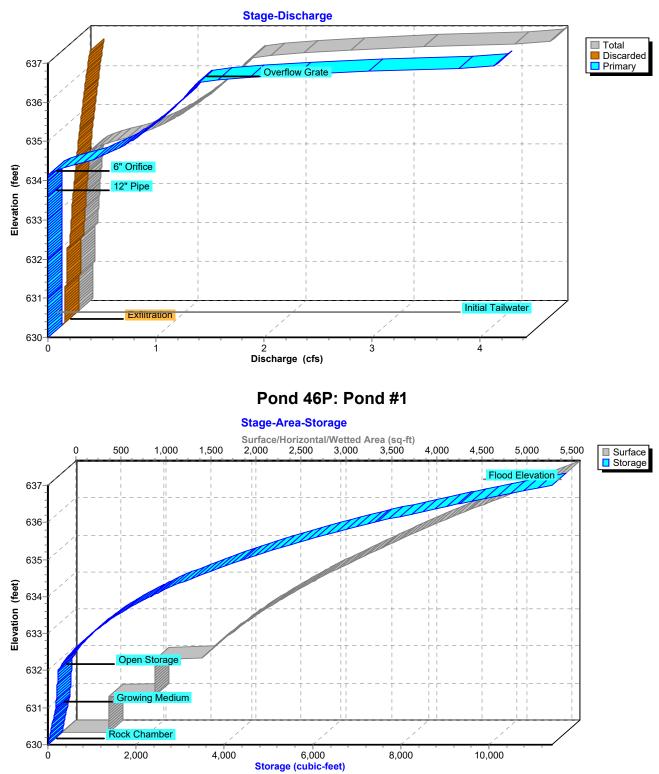
Summary for Pond 46P: Pond #1

Printed 2/21/2023


Page 108

Inflow Area =	3.584 ac,100	0.00% Impervious, Inflow D	epth = 2.10" for Destination event
Inflow =	1.78 cfs @	7.90 hrs, Volume=	0.627 af
Outflow =	0.60 cfs @	9.34 hrs, Volume=	0.627 af, Atten= 66%, Lag= 86.6 min
Discarded =	0.20 cfs @	9.33 hrs, Volume=	0.415 af
Primary =	0.40 cfs @	9.34 hrs, Volume=	0.213 af
Routed to Pond	d 47P : Pond #	43	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 635.83' @ 9.33 hrs Surf.Area= 4,347 sf Storage= 6,851 cf Flood Elev= 637.00' Surf.Area= 5,590 sf Storage= 11,426 cf


Plug-Flow detention time= 279.2 min calculated for 0.627 af (100% of inflow) Center-of-Mass det. time= 279.7 min (940.0 - 660.2)

Volume	Invert	Avail	.Storage	Storage Descripti	on						
#1	632.00'	1	11,193 cf								
#2	631.00'		52 cf		Growing Medium (Irregular)Listed below (Recalc)						
			101 5	518 cf Overall x 10.0% Voids							
#3	630.00'		181 cf	Rock Chamber (Irregular)Listed b	elow (Recalc)					
			11 406 of	518 cf Overall x							
			11,426 cf	Total Available St	orage						
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
632.00		518	104.0	0	0	518					
633.00		1,018	147.0	754	754	1,386					
634.00		1,697	191.0	1,343	2,097	2,581					
635.00		2,527	224.0	2,098	4,195	3,691					
636.00		3,482	253.0	2,992	7,187	4,817					
637.00		4,554	282.0	4,006	11,193	6,081					
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
631.00		518	104.0	0	0	518					
632.00		518	104.0	518	518	622					
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
630.00		518	104.0	0	0	518					
631.00		518	104.0	518	518	622					
Device F	Routing	١n	vert Outl	et Devices							
	Discarded	630		0 in/hr Exfiltration		rea					
#2 F	Primary	633.		" Round 12" Pipe							
				00.0' CPP, mitere							
				/ Outlet Invert= 63		= 0.0040 '/' Cc= ().900				
				.010, Flow Area=							
#3 E	Device 2	634	.10' 6.0''	Vert. 6" Orifice	C= 0.600 Limited	d to weir flow at lov	v heads				

Time (hours)

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

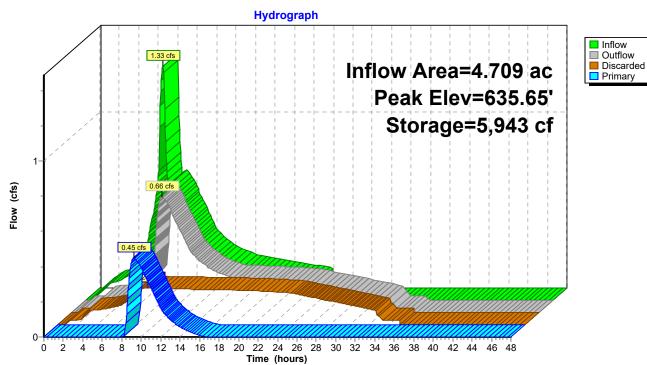
Pond 46P: Pond #1

Pine Springs Apartments HydroCAD ReportType IA 24-Prepared by A&O Engineering LLCHydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Pine Springs Apartments - Village Green Type IA 24-hr Destination Rainfall=3.60" Printed 2/21/2023 tions LLC Page 111

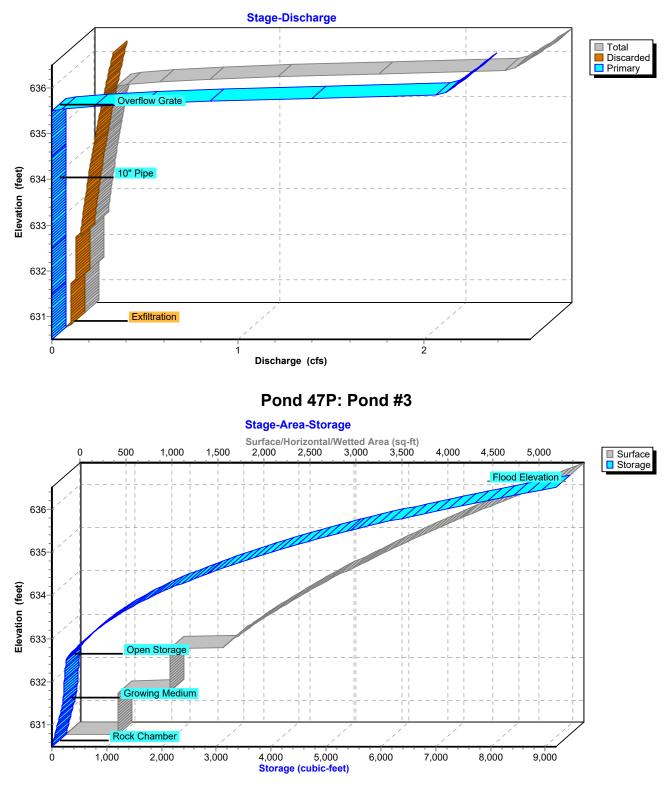
Summary for Pond 47P: Pond #3

Inflow Area =	4.709 ac,100	0.00% Impervious, Inflow D	epth = 1.35" for Destination event
Inflow =	1.33 cfs @	7.91 hrs, Volume=	0.528 af
Outflow =	0.66 cfs @	9.23 hrs, Volume=	0.528 af, Atten= 51%, Lag= 79.2 min
Discarded =	0.21 cfs @	9.23 hrs, Volume=	0.411 af
Primary =	0.45 cfs @	9.23 hrs, Volume=	0.117 af
Routed to Read	ch 50R : Disch	arge	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 635.65' @ 9.23 hrs Surf.Area= 4,471 sf Storage= 5,943 cf Flood Elev= 636.50' Surf.Area= 5,485 sf Storage= 9,193 cf

Plug-Flow detention time= 285.8 min calculated for 0.528 af (100% of inflow) Center-of-Mass det. time= 286.1 min (963.0 - 676.9)

Volume	Invert	Avail.Stora	ge	Storage Descripti	on						
#1	632.50'	8,937	cf	Open Storage (Ir	Open Storage (Irregular)Listed below (Recalc)						
#2	631.50'	57	cf		Growing Medium (Irregular)Listed below (Recalc)						
			_	568 cf Overall x							
#3	630.50'	199	cf	Rock Chamber (elow (Recalc)					
				568 cf Overall x 3							
		9,193	CŤ	Total Available St	torage						
Elevation	Surf.A	rea Pei	im.	Inc.Store	Cum.Store	Wet.Area					
(feet)	(so	∣-ft) (fe	eet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
632.50	Į	568 14	9.0	0	0	568					
633.50			5.0	890	890	1,839					
634.50			9.0	1,674	2,564	3,374					
635.50			1.0	2,630	5,194	5,131					
636.50	4,3	349 30	8.0	3,743	8,937	6,431					
Elevation	Surf.A	rea Pei	im.	Inc.Store	Cum.Store	Wet.Area					
(feet)			et)	(cubic-feet)	(cubic-feet)	(sq-ft)					
631.50			9.0	0	0	568					
632.50	Ę	568 14	9.0	568	568	717					
Elevation	Surf.A	rea Pei	im	Inc.Store	Cum.Store	Wet.Area					
(feet)			et)	(cubic-feet)	(cubic-feet)	(sq-ft)					
630.50			9.0	0	0	568					
631.50			9.0	568	568	717					
001100	·		0.0								
Device F	Routing	Invert	Outl	et Devices							
	Discarded			0 in/hr Exfiltration		rea					
#2 F	Primary			" Round 10" Pipe							
				80.0' CPP, mitere		,					
				/ Outlet Invert= 63		= 0.0040 '/' Cc=	0.900				
	. · .			.010, Flow Area=							
#3 E	Device 2			" W x 8.0" H 18° C		C= 0.600					
				ted to weir flow at I	ow neads						


Discarded OutFlow Max=0.21 cfs @ 9.23 hrs HW=635.65' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.45 cfs @ 9.23 hrs HW=635.65' TW=0.00' (Dynamic Tailwater) -2=10" Pipe (Passes 0.45 cfs of 2.03 cfs potential flow) -3=Overflow Grate (Weir Controls 0.45 cfs @ 1.20 fps)

Pond 47P: Pond #3

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Pond 47P: Pond #3

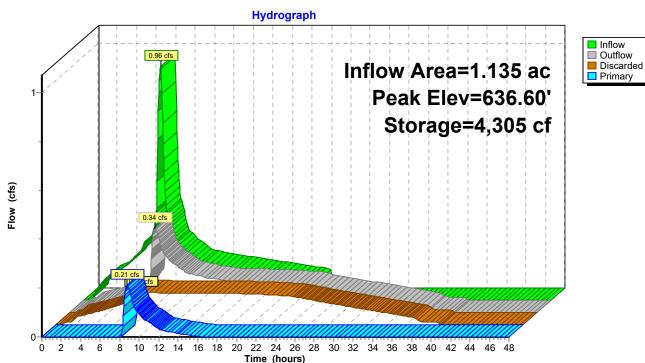
Pine Springs Apartments - Village Green Pine Springs Apartments HydroCAD Report Type IA 24-hr Destination Rainfall=3.60" Prepared by A&O Engineering LLC HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 48P: Pond #2

Printed 2/21/2023

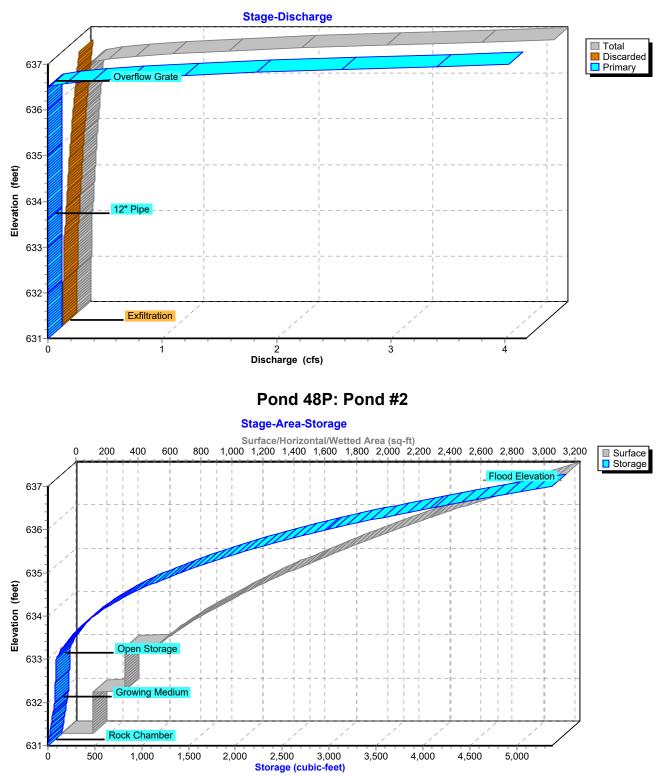
Page 114

Inflow Area =	1.135 ac,100	0.00% Impervious, Inflow [Depth = 3.37" for De	stination event
Inflow =	0.96 cfs @	7.90 hrs, Volume=	0.318 af	
Outflow =	0.34 cfs @	8.76 hrs, Volume=	0.318 af, Atten= 64%	, Lag= 52.0 min
Discarded =	0.13 cfs @	8.76 hrs, Volume=	0.282 af	
Primary =	0.21 cfs @	8.76 hrs, Volume=	0.036 af	
Routed to Pon	d 46P : Pond #	<i>±</i> 1		


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 636.60' @ 8.76 hrs Surf.Area= 2,867 sf Storage= 4,305 cf Flood Elev= 637.00' Surf.Area= 3,234 sf Storage= 5,376 cf

Plug-Flow detention time= 386.6 min calculated for 0.318 af (100% of inflow) Center-of-Mass det. time= 387.2 min (1,050.5 - 663.3)

Volume	Invert	Avai	I.Storage	Storage Descriptio	n						
#1	633.00'		5,285 cf	Open Storage (Irregular)Listed below (Recalc)							
#2	632.00'		20 cf	Growing Medium	Growing Medium (Irregular)Listed below (Recalc)						
					202 cf Overall x 10.0% Voids						
#3	631.00'		71 cf		Rock Chamber (Irregular)Listed below (Recalc)						
				202 cf Overall x 3							
			5,376 cf	Total Available Sto	brage						
Elevation	Surf	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)	((sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
633.00		202	86.0	0	0	202					
634.00		636	129.0	399	399	946					
635.00		1,228	167.0	916	1,315	1,853					
636.00		1,969	202.0	1,584	2,899	2,897					
637.00		2,830	228.0	2,387	5,285	3,812					
Elevation	Surf	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
632.00		202	86.0	0	0	202					
633.00		202	86.0	202	202	288					
Elevation	Surf	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
631.00		202	86.0	0	0	202					
632.00		202	86.0	202	202	288					
Device F	Routing	In	vert Outle	et Devices							
)iscarded	631		0 in/hr Exfiltration	over Surface ar	02					
	Primary	633		" Round 12" Pipe		u d					
<i>"_</i> '	linery	000		00.0' CPP, mitered		. Ke= 0.700					
				/ Outlet Invert= 633			0.900				
				.010, Flow Area= 0		-					
#3 E	evice 2	636	.50' 24.0	" W x 8.0" H 18° O	verflow Grate C	= 0.600					
			Limi	ted to weir flow at lo	w heads						


Discarded OutFlow Max=0.13 cfs @ 8.76 hrs HW=636.59' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.21 cfs @ 8.76 hrs HW=636.59' TW=635.74' (Dynamic Tailwater) -2=12" Pipe (Passes 0.21 cfs of 1.93 cfs potential flow) -3=Overflow Grate (Weir Controls 0.21 cfs @ 0.96 fps)

Pond 48P: Pond #2

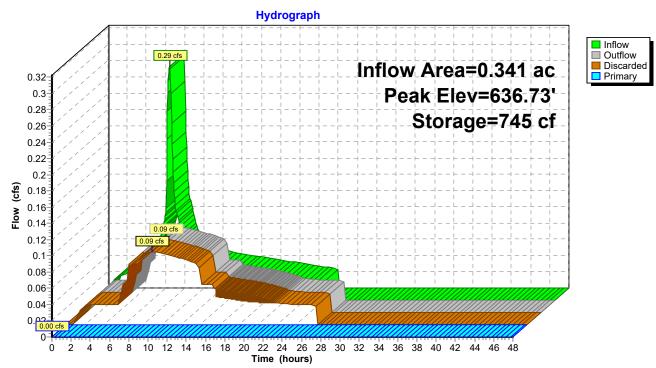
Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

Pond 48P: Pond #2

Summary for Pond 49P: Pond #4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=62)

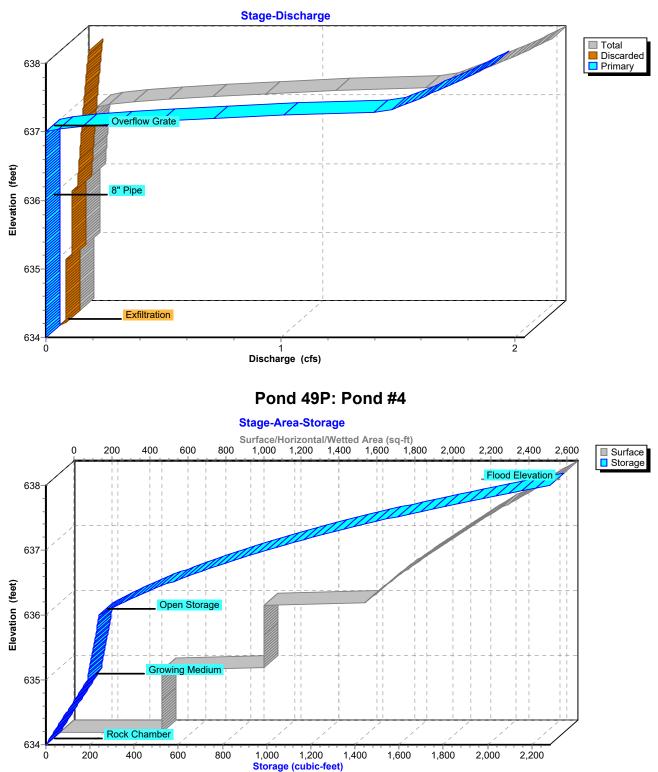
Inflow Area =	0.341 ac,10	0.00% Impervious, Inflow [Depth = 3.37" for Destination event
Inflow =	0.29 cfs @	7.90 hrs, Volume=	0.096 af
Outflow =	0.09 cfs @	9.00 hrs, Volume=	0.096 af, Atten= 69%, Lag= 66.1 min
Discarded =	0.09 cfs @	9.00 hrs, Volume=	0.096 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Routed to Pone	d 46P : Pond #	± 1	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 636.73' @ 9.00 hrs Surf.Area= 1,936 sf Storage= 745 cf Flood Elev= 638.00' Surf.Area= 2,659 sf Storage= 2,283 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 89.9 min (753.2 - 663.3)

Volume	Invert	Avai	I.Storage	Storage Description	on						
#1	636.00'		2,041 cf	Open Storage (Ir	Open Storage (Irregular)Listed below (Recalc)						
#2	635.00'		54 cf	Growing Medium							
					537 cf Overall x 10.0% Voids						
#3	634.00'		188 cf	Rock Chamber (I	rregular)Listed be	elow (Recalc)					
				537 cf Overall x 3		(, , , , , , , , , , , , , , , , , , ,					
			2,283 cf	Total Available Sto	orage						
	-										
Elevation		f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet	/	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
636.00		537	102.0	0	0	537					
637.00)	1,003	131.0	758	758	1,087					
638.00)	1,585	159.0	1,283	2,041	1,749					
Elevatior		f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
					-						
(feet	/	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
635.00		537	102.0	0	0	537					
636.00)	537	102.0	537	537	639					
Elevatior	ר Sui	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area					
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)					
634.00	/	537	102.0	0	0	537					
635.00		537	102.0	537	537	639					
Device	Routing	In	vert Outle	et Devices							
#1	Discarded	634	.00' 2.00	0 in/hr Exfiltration	over Surface ar	ea					
#2	Primary	636	.00' 8.0"	Round 8" Pipe							
	5		L= 1	25.0' CPP, mitere	d to conform to fill	, Ke= 0.700					
			Inlet	/ Outlet Invert= 636	6.00'/634.00' S=	= 0.0160 '/' Cc= 0	.900				
			n= 0	.010, Flow Area= 0).35 sf						
#3	Device 2	637		" W x 8.0" H 18° O		= 0.600					
			Limi	ted to weir flow at lo	ow heads						

Discarded OutFlow Max=0.09 cfs @ 9.00 hrs HW=636.73' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=634.00' TW=630.00' (Dynamic Tailwater) -2=8" Pipe (Controls 0.00 cfs) -3=Overflow Grate (Controls 0.00 cfs)

Pond 49P: Pond #4

Pine Springs Apartments HydroCAD Report Prepared by A&O Engineering LLC

HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC

Pond 49P: Pond #4

Pine Springs Apartments - Village GreenPine Springs Apartments HydroCAD Report Type IA 24-hr Pollution Reduction Rainfall=1.40"Prepared by A&O Engineering LLCPrinted 2/21/2023HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLCPage 120

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

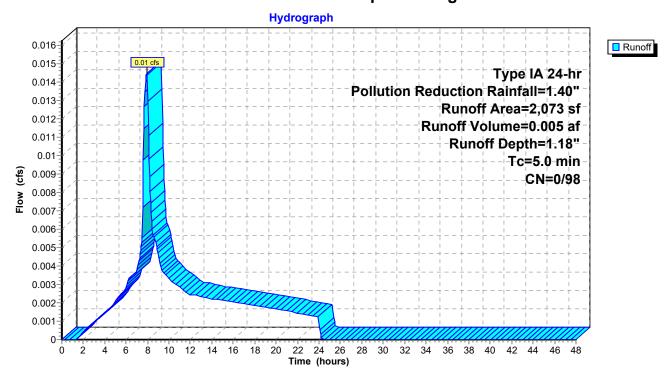
Subcatchment8S: Apt Building 1	Runoff Area=2,073 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.01 cfs 0.005 af
Subcatchment9S: Apt Building 2	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment10S: Apt Building 3	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment11S: Apt Building 4	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment12S: Apt Building 5	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment13S: Apt Building 6	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment14S: Apt Building 7	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment15S: Apt Building 8	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment16S: Apt Building 9	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment17S: Apt Building 10	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment18S: Apt Building 11	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment19S: Apt Building 12	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment20S: Apt Building 13	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment21S: Apt Building 14	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment22S: Apt Building 15	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment23S: Apt Building 16	Runoff Area=5,606 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af

Pine Springs Apartments - Village GreenPine Springs Apartments HydroCAD ReportPrepared by A&O Engineering LLCPrinted 2/21/2023HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLCPage 121

Subcatchment26S: P1	Runoff Area=5,680 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment27S: P2	Runoff Area=4,460 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Subcatchment28S: P3	Runoff Area=11,250 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.08 cfs 0.025 af
Subcatchment29S: P4	Runoff Area=7,128 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.016 af
Subcatchment30S: P5	Runoff Area=11,417 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.08 cfs 0.026 af
Subcatchment31S: P6	Runoff Area=7,570 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.017 af
Subcatchment32S: P7	Runoff Area=7,142 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.016 af
Subcatchment33S: P8	Runoff Area=7,675 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.017 af
Subcatchment34S: P9	Runoff Area=6,421 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.015 af
Subcatchment35S: P10	Runoff Area=6,146 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.014 af
Subcatchment36S: P11	Runoff Area=7,429 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.05 cfs 0.017 af
Subcatchment37S: P12	Runoff Area=9,368 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.07 cfs 0.021 af
Subcatchment38S: P13	Runoff Area=5,595 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.04 cfs 0.013 af
Subcatchment39S: P14	Runoff Area=4,779 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment40S: P15	Runoff Area=4,741 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment41S: P16	Runoff Area=8,967 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.06 cfs 0.020 af
Subcatchment50S: Existing Buildings	Runoff Area=44,242 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.31 cfs 0.100 af

Pine Springs Ap	oartments - Village Green
Pine Springs Apartments HydroCAD Report ype IA 24-hr Pollution R	Reduction Rainfall=1.40"
Prepared by A&O Engineering LLC	Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC	Page 122

Subcatchment51S: Exis	sting Impervious	Runoff Area=68,924 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.48 cfs 0.156 af
Subcatchment52S: Exis	sting Landscape	Runoff Area=82,633 sf 0.00% Impervious Runoff Depth=0.02" Tc=60.0 min CN=65/0 Runoff=0.01 cfs 0.003 af
Subcatchment94S: Pon	d #3	Runoff Area=4,349 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Subcatchment95S: Pon	d #1	Runoff Area=4,554 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Subcatchment96S: Pon	d #2	Runoff Area=2,830 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.02 cfs 0.006 af
Subcatchment97S: Pon	d #4	Runoff Area=1,585 sf 100.00% Impervious Runoff Depth=1.18" Tc=5.0 min CN=0/98 Runoff=0.01 cfs 0.004 af
Reach 50R: Discharge		Inflow=0.07 cfs 0.023 af Outflow=0.07 cfs 0.023 af
Reach 53R: Existing Dis	charge	Inflow=0.79 cfs 0.259 af Outflow=0.79 cfs 0.259 af
Pond 46P: Pond #1	Discarded=0.13 c	Peak Elev=634.08' Storage=2,463 cf Inflow=0.64 cfs 0.208 af fs 0.208 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.208 af
Pond 47P: Pond #3	Discarded=0.10 c	Peak Elev=633.29' Storage=904 cf Inflow=0.34 cfs 0.111 af fs 0.111 af Primary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.111 af
Pond 48P: Pond #2	Discarded=0.07 c	Peak Elev=634.94' Storage=1,329 cf Inflow=0.35 cfs 0.112 af fs 0.112 af Primary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.112 af
Pond 49P: Pond #4	Discarded=0.05 c	Peak Elev=635.01' Storage=189 cf Inflow=0.10 cfs 0.034 af fs 0.034 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.034 af
Total Ru	inoff Area = 9.436	ac Runoff Volume = 0.745 af Average Runoff Depth = 0.95" 20.10% Pervious = 1.897 ac 79.90% Impervious = 7.539 ac


Summary for Subcatchment 8S: Apt Building 1

[49] Hint: Tc<2dt may require smaller dt

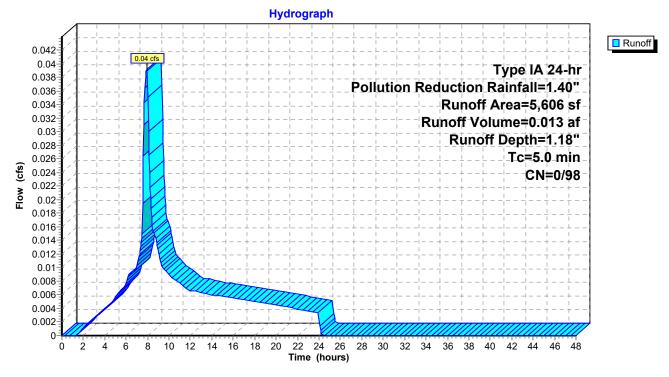
Runoff = 0.01 cfs @ 7.91 hrs, Volume= Routed to Pond 49P : Pond #4

0.005 af, Depth= 1.18"

Ar	ea (sf)	CN	Description					
	2,073	98	Unconnecte	ed roofs, HS	SG B			
	2,073	98	100.00% In	npervious A	rea			
Tc _(min)	Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)							
5.0	0 Direct Entry,							
Subcatchment 8S: Apt Building 1								

Summary for Subcatchment 9S: Apt Building 2

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 49P : Pond #4

0.013 af, Depth= 1.18"

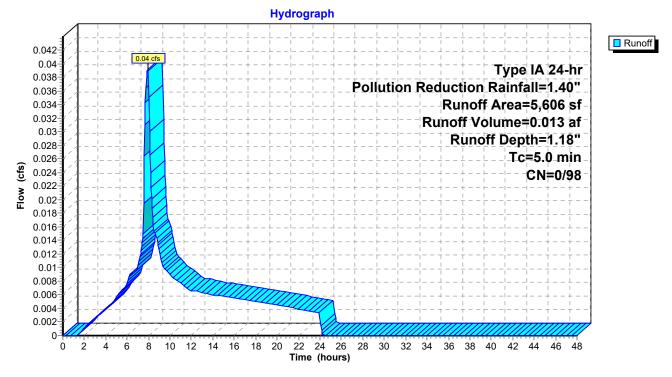
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description		
	5,606	98	Unconnecte	ed roofs, H	SG B
	5,606	98	100.00% In	npervious A	Area
Tc _(min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 9S: Apt Building 2

Summary for Subcatchment 10S: Apt Building 3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 49P : Pond #4

0.013 af, Depth= 1.18"

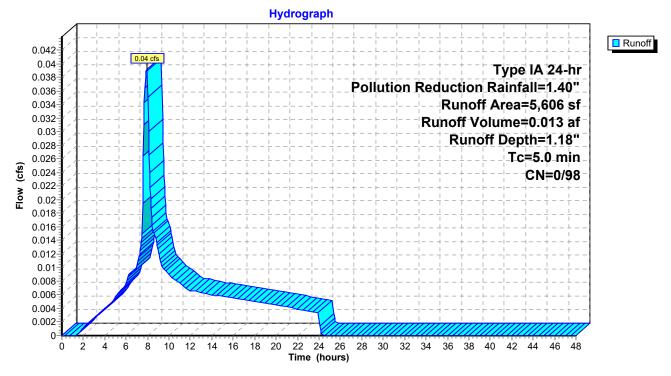
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description		
	5,606	98	Unconnecte	ed roofs, H	ISG B
	5,606	98	100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 10S: Apt Building 3

Summary for Subcatchment 11S: Apt Building 4

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Por	d 46P : Pond #	¥1	

0.013 af, Depth= 1.18"

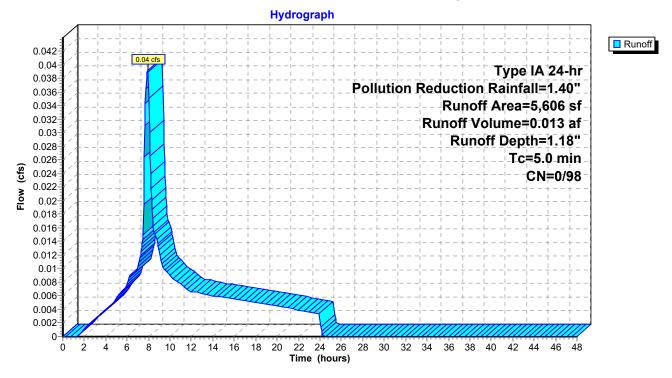
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description					
	5,606	98	98 Unconnected roofs, HSG B					
	5,606	98	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 11S: Apt Building 4

Summary for Subcatchment 12S: Apt Building 5

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Pon	d 46P : Pond #	#1	

0.013 af, Depth= 1.18"

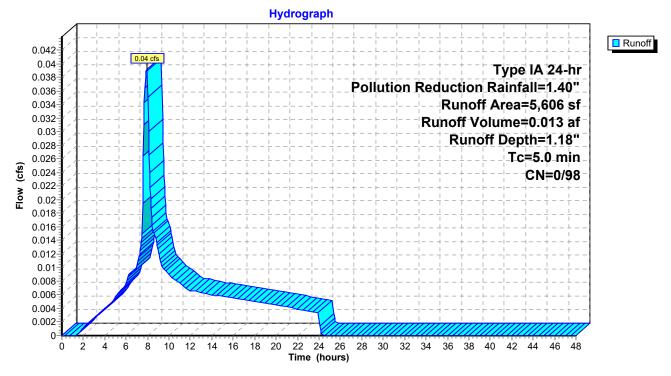
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	1		
5.0					Direct Entry,		

Subcatchment 12S: Apt Building 5

Summary for Subcatchment 13S: Apt Building 6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Po	nd 46P : Pond #	#1	

0.013 af, Depth= 1.18"

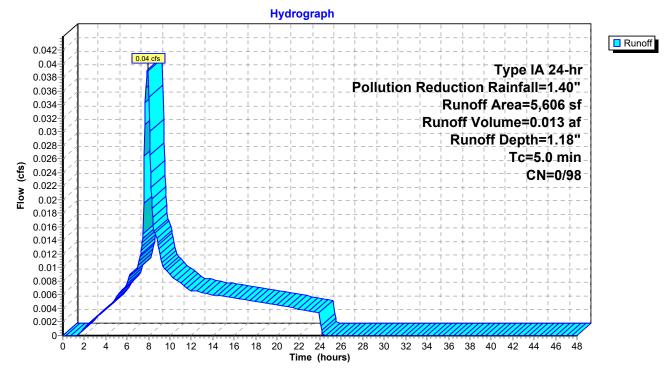
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description					
	5,606	98	98 Unconnected roofs, HSG B					
	5,606	98	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 13S: Apt Building 6

Summary for Subcatchment 14S: Apt Building 7

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	d to l	Pond 47P : Pond #	# 3	

0.013 af, Depth= 1.18"

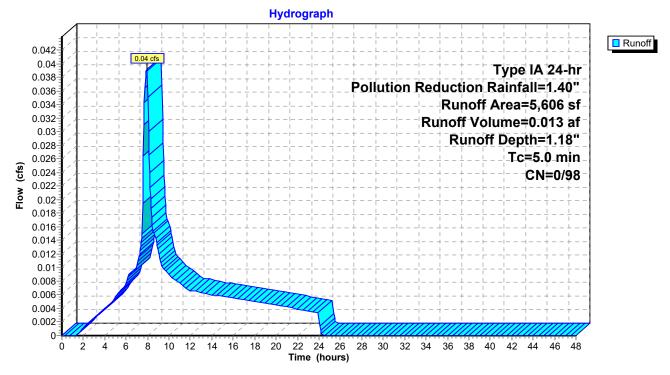
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description					
	5,606	98	98 Unconnected roofs, HSG B					
	5,606	98	98 100.00% Impervious Area					
Tc _(min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 14S: Apt Building 7

Summary for Subcatchment 15S: Apt Building 8

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to F	Pond 47P : Pond #	±3	

0.013 af, Depth= 1.18"

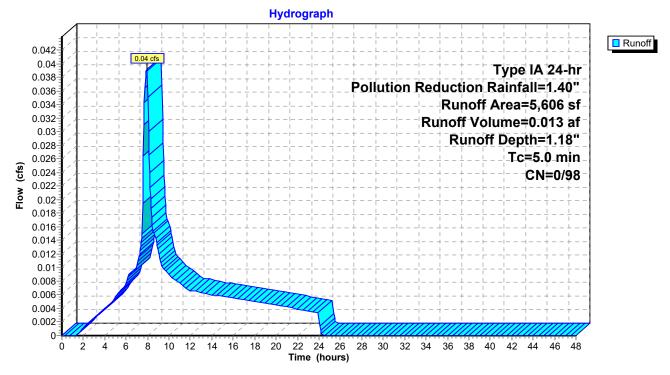
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description				
	5,606	98	98 Unconnected roofs, HSG B				
	5,606	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	1		
5.0					Direct Entry,		

Subcatchment 15S: Apt Building 8

Summary for Subcatchment 16S: Apt Building 9

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Pon	d 46P : Pond #	#1	

0.013 af, Depth= 1.18"

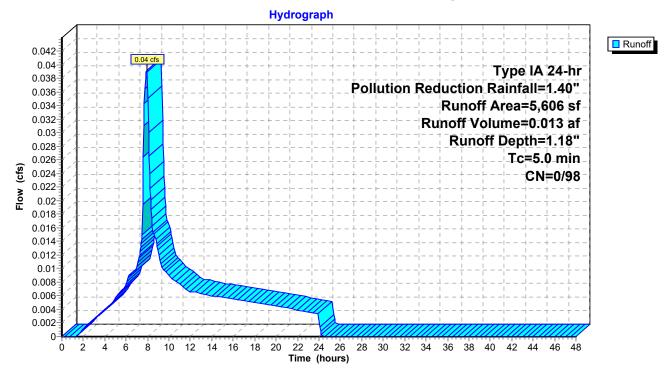
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description					
	5,606	98	98 Unconnected roofs, HSG B					
	5,606	98	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 16S: Apt Building 9

Summary for Subcatchment 17S: Apt Building 10

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Po	nd 46P : Pond #	#1	

0.013 af, Depth= 1.18"

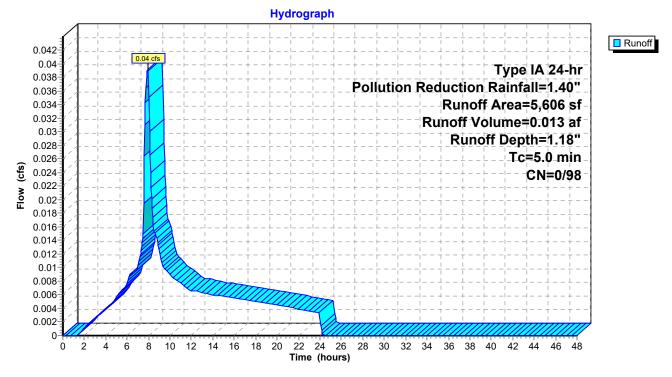
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description				
	5,606 98 Unconnected roofs, HSG B 5,606 98 100.00% Impervious Area c Length Slope Velocity Capacity Description) (feet) (ft/ft) (ft/sec) (cfs)						
	5,606	98	100.00% In	npervious A	Area		
Tc (min)	0		,		1		
5.0					Direct Entry,		

Subcatchment 17S: Apt Building 10

Summary for Subcatchment 18S: Apt Building 11

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1

0.013 af, Depth= 1.18"

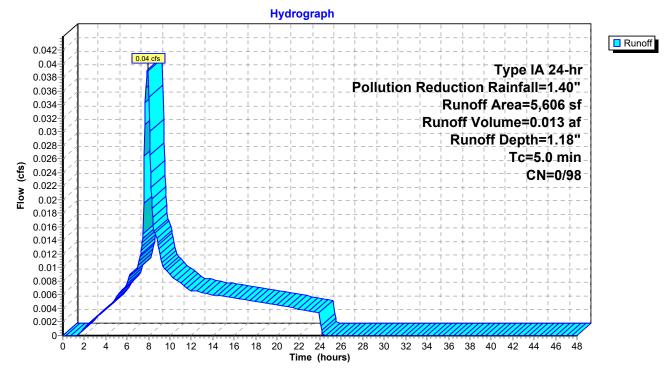
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description							
	5,606	98 Unconnected roofs, HSG B 506 98 100.00% Impervious Area ngth Slope Velocity Capacity Description feet) (ft/ft) (ft/sec) (cfs)								
	5,606	,606 98 100.00% Impervious Area								
Tc (min)	Length (feet)				Description					
5.0					Direct Entry,					

Subcatchment 18S: Apt Building 11

Summary for Subcatchment 19S: Apt Building 12

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1

0.013 af, Depth= 1.18"

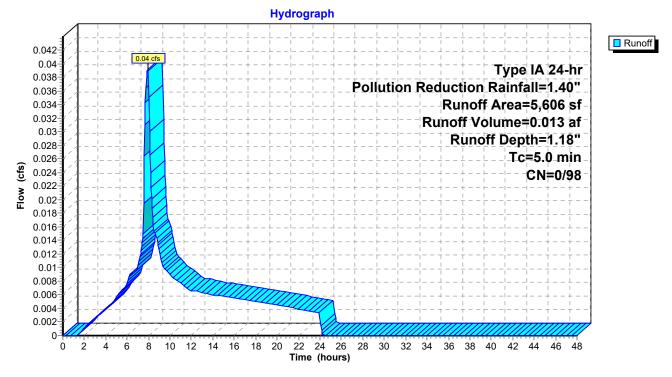
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description				
	5,60698Unconnected roofs, HSG B5,60698100.00% Impervious AreacLengthSlopeVelocitycLengthSlopeVelocityn)(feet)(ft/ft)(ft/sec)						
	5,606	98	100.00% In	npervious A	vrea		
Tc (min)	0				Description		
5.0					Direct Entry,		

Subcatchment 19S: Apt Building 12

Summary for Subcatchment 20S: Apt Building 13

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Pon	d 46P : Pond #	#1	

0.013 af, Depth= 1.18"

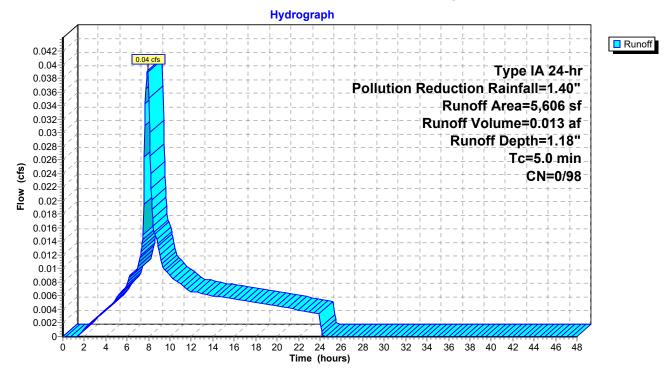
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN										
	5,606 98 Unconnected roofs, HSG B 5,606 98 100.00% Impervious Area c Length Slope Velocity Capacity Description) (feet) (ft/ft) (ft/sec) (cfs)											
	5,606	6,606 98 100.00% Impervious Area										
Tc (min)	0				Description							
5.0					Direct Entry,							

Subcatchment 20S: Apt Building 13

Summary for Subcatchment 21S: Apt Building 14

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2

0.013 af, Depth= 1.18"

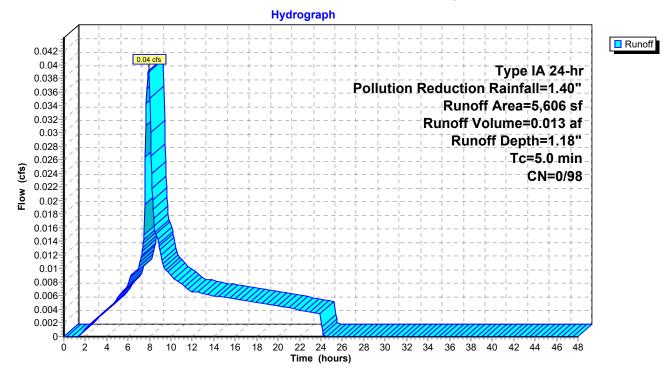
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description							
	5,60698Unconnected roofs, HSG B5,60698100.00% Impervious AreaLengthSlopeVelocityCapacityDescription									
	5,606	,606 98 100.00% Impervious Area								
Tc (min)	Length (feet)			Capacity (cfs)						
5.0					Direct Entry,					

Subcatchment 21S: Apt Building 14

Summary for Subcatchment 22S: Apt Building 15

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2

0.013 af, Depth= 1.18"

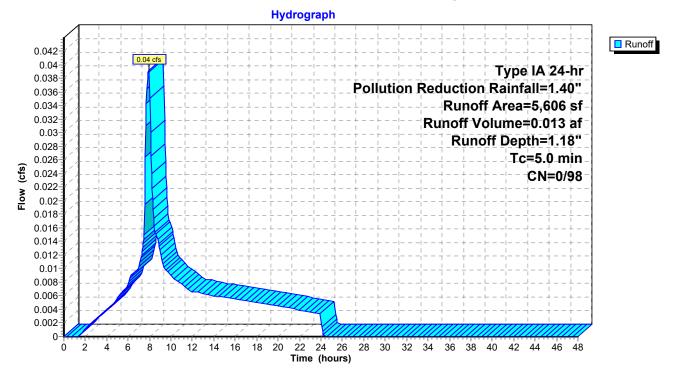
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description							
	5,60698Unconnected roofs, HSG B5,60698100.00% Impervious AreaLengthSlopeVelocityCapacityDescription									
	5,606	,606 98 100.00% Impervious Area								
Tc (min)	Length (feet)			Capacity (cfs)						
5.0					Direct Entry,					

Subcatchment 22S: Apt Building 15

Summary for Subcatchment 23S: Apt Building 16

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.04 cfs @	7.91 hrs,	Volume=
Routed	to Pon	d 48P : Pond #	#2	

0.013 af, Depth= 1.18"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

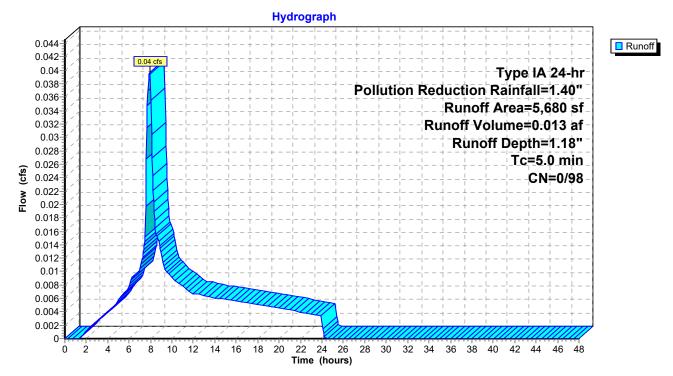
A	rea (sf)	CN	Description						
	5,60698Unconnected roofs, HSG B5,60698100.00% Impervious AreaLengthSlopeVelocityCapacity(feet)(ft/ft)(ft/sec)(cfs)								
	5,606	5,606 98 100.00% Impervious Area							
Tc (min)	0				Description				
5.0					Direct Entry,				

Subcatchment 23S: Apt Building 16

Summary for Subcatchment 26S: P1

0.013 af, Depth= 1.18"

Includes area from common drive aisle that serves Village Green Hotel.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Reach 50R : Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

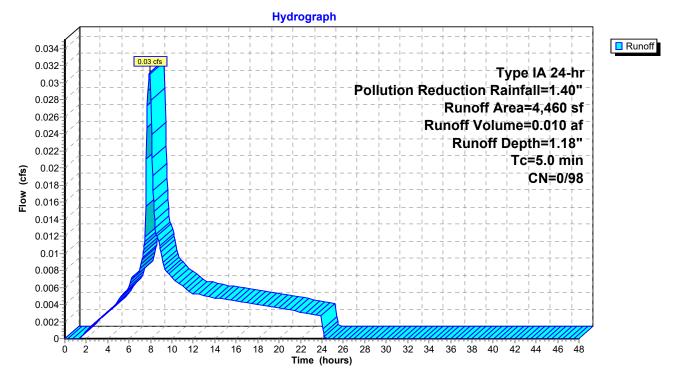
A	rea (sf)	CN I	Description					
*	5,680	98	mpervious	Surface				
	5,680	680 98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
<u>(11111)</u> 5.0	(leet)	(1711)	(II/Sec)	(015)	Direct Entry,			
5.0					Direct Littiy,			

Subcatchment 26S: P1

Summary for Subcatchment 27S: P2

0.010 af, Depth= 1.18"

Includes drive aisle that serves Village Green Hotel.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.03 cfs @ 7.91 hrs, Volume= Routed to Reach 50R : Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

_	А	rea (sf)	CN									
*		4,460	98	Impervious	Surface							
		4,460	98	100.00% Impervious Area								
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description						
	5.0					Direct Entry,						

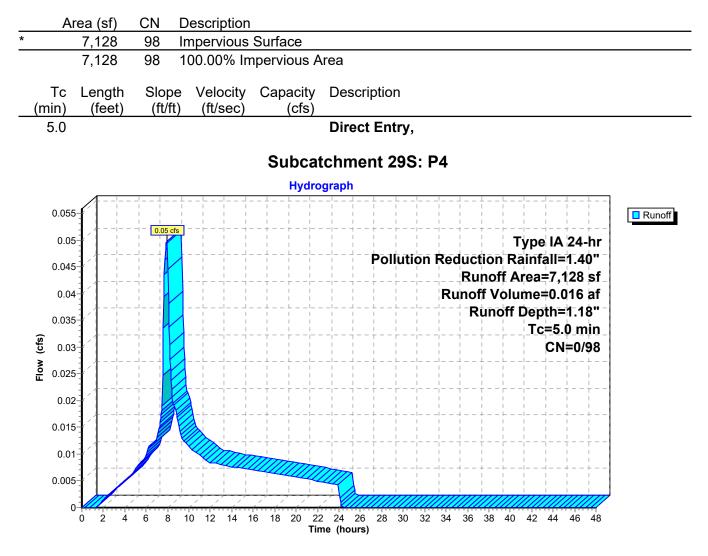
Subcatchment 27S: P2

Summary for Subcatchment 28S: P3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.08 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2

0.025 af, Depth= 1.18"


	Area (sf)		Description														
*	11,250		mpervious														
	11,250	98 1	00.00% Ir	nperviou	s Area	а											
To (min)	0	Slope (ft/ft)	Velocity (ft/sec)	Capaci (cfs		escri	otion	ı									
5.0)				D	irect	Ent	ry,									
				Subo	atch	nmer	nt 2	8S:	P3								
				Ну	drogra	ph											
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	08 175 175 107 107 107 107 107 107 107 107							· · · · · · · · · · · · · · · · · · ·		Run unoi	off	Ra Are	ninf ea= me Dep	11,2 =0.0 oth= =5.	=1.4 250 025 =1.1	0 " - sf - af - 8" - nin -	Runoff
0.0							$\frac{1}{1} \frac{1}{1}$	 			<u>+</u> – – 	! 	' 	_ 		$\frac{1}{1} = -$	
	0 2 4	68	10 12 14	16 18 20	22 2 Time (4 26 (hours)	28	30 3	2 34	36	38	40	42	44	46	48	

Summary for Subcatchment 29S: P4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2

0.016 af, Depth= 1.18"

Summary for Subcatchment 30S: P5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.08 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2 0.026 af, Depth= 1.18"

A	rea (sf)	CN	Description										
*	11,417	98	Impervious	Surface									
	11,417	98	100.00% In	npervious A	Area								
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Descrip	otion							
5.0					Direct	Entry,							
				Subca	tchmer	nt 30S	: P5						
				Hydro	ograph								
0.08 0.07 0.00 0.06 0.05 (sc) 0.00 0.04 0.04 0.04 0.03 0.04 0.03 0.02 0.03 0.02 0.01 0.02								Runof		ainfa ea=1 ime= Dep Tc 	all=1 11,4 =0.02 th=1 =5.0 CN=1	17 sf 26 af 1.18" - 1.18" - 1.	Runoff
	= /////	6 8	10 12 14	16 18 20 2 Tii	2 24 26 me (hours)	28 30	32 34	36	38 40	42	44	46 48	

Summary for Subcatchment 31S: P6

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.017 af, Depth= 1.18"

 7,570 98 Impervious Surface 7,570 98 100.00% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 31S: P6 Hydrograph 0.055 0.056 0.045		A	rea (st	F)	CN	D)escr	iptio	n																	
Tc Length Slope Velocity Capacity Description 5.0 Direct Entry, Subcatchment 31S: P6 Hydrograph 0.055 0.056 0.045 0.045 0.045 0	*		7,57	0	98	lr	nper	vious	s Si	urfa	се															
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 31S: P6 Hydrograph 0.065 0.04 0.04 0.035 0.04 0.035 0.04 0.035 0.04 0.035 0.04 0.035 0.04 0.035 0.04 0.055 0.05			7,57	0	98	1	00.00)% I	mpe	ervi	ous	s Are	ea													
Subcatchment 31S: P6 Hydrograph	(Des	crip	otio	n										
Hydrograph		5.0										l	Dire	ect	Ent	t ry ,										
0.055 0.05 0.045 0.0										Su	ıbc	atc	hm	ner	nt 3	31S	: P	6								
0.055 0.05 0.045 0.045 0.045 0.045 0.045 0.045 0.046 0.035 0.0											Нус	lrogi	raph													
0.045 0.04 0.04 0.04 0.035 0.035 0.035 0.025 0.025 0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.025			1 /-			05 cfs										 										Runoff
0.04 Runoff Volume=0.017 af 0.035 Tc=5.0 min 0.035 CN=0/98 0.025 0.025 0.025 0.025 0.015 0.01 0.015 0.01 0.005 0.01			1 / -	 _	 	M			 	 	 	 	 		201											
0.04 0.035 0.03 0.025 0.02 0.015		0.04		i _i	i i J1		L _		 	 	; 	i L	i i !			; 										-
0.035 0.035 0.035 0.03 0.025 0.025 0.015 0.015 0.015 0.014 0.005 0.015		0.04		1		Y		1	 		1	1				1	1	lixu								
g 0.03 0.025 0.02 0.015 0.015 0.015 0.015 0.015 0.015 0.005		0.03		-i I	ii			-i	;	- - -	 I	i i	i		- 	- I	; I	i I		T	г – - I					
		(cts)	1.4-	-	 +	K		-	 	 +	 +	 			 -	 	 	 - — — -	 +	 +	 ⊢ − −	 -				
		≥ ^{0.03}		i _l	i i 		i L _	i _l	 		i +	 	i i			i L	 		i 4		 			; 	; +	
	i	0.02	5-1					1	 	1	1	1				1	1	1	1	1				1		
		0.02		-i i	ii	X		-i	;		<u>+</u> – – 1	 I	ii I			 I	i I	;	<u> </u>	<u> </u>	 I	-i	-i		<u>+</u> 	
			1.4-	-					 	+	+	 					 		+	+	 	-		+	+	
		0.01	° ⊺ ↓_	_			\longrightarrow	; _!	 	+	; +	 	i i		 	i +	 	.	; +	; +	 			; +	; +	,
		0.0									-					1	1	1	1	1	 	1		1	1	
		0.00	<u>;</u>]/[_													 	 	1	1		 	1	1		1	
V		,							۱ 	1 	<u> </u>														-	لو
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)		(4	6	8 1	10 12	14	16	18					28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 32S: P7

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.016 af, Depth= 1.18"

	Area (sf)	CN	Descr	ription															
ł	7,142	98		vious															
	7,142	98	100.0	0% In	npervi	ious A	Area												
To (min		Slop (ft/ft		locity /sec)	Сар	acity (cfs)	Des	cripti	on										
5.0)						Dire	ct Ei	ntry	,									
					Sı	ıbca	tchm	ent	328	6: F	? 7								
						Hydro	ograph												_
0.0	055-											 	 						Runoff
0	.05												1		ype				
0.0	045			· _'	<u> </u> 		' 	- Pc	lluti	on	Rec	1	1	1	1	1	1		
0	.04	-i+			+ 	+ -		+-		-i !	Ru	nof			rea: me:				
0.0	035		·	·	<u> </u>			<u> </u> -		-i					Dep	th=	1.1	8"-	
	¦				+			<u>+</u> -					, T	- 	Тс	=5.			
0 (cfs)	0.03			 	, , , _ ⊥		 		 _ L	 _	 _	, , ,	 	 	 	CN	= 0/	98	
6 0.0	025										1	1	 	 	1				
0	0.02	т г Г		· - - 	- 	I I I I	<u> </u> 	T - I I	- F I	- 	- ' 	т — — 	т — — 		- 	 	т — — 	 	
0.0	D15					$\begin{array}{c} L = - L \\ I & I \\ I & I \\ I & I \end{array}$		<u>+</u> - 	_ L 	_!	_ 	1	⊥ 	L	-!	 	⊥	· ⊥	
0	0.01						¦ 		- 	-¦ ! !		 ! !	 	 	 	 		· <u>-</u>	
0.0	005								_ L 	-! ! !	_ 		+ 	L 	-! ! !	 	⊥ 	· ⊥ 	
	$0 \frac{1}{2}$		10 12	<u> </u>	, ,	20 2	2 24	26 28	30	32	3/	36	38	40	42	44	46	48	
	0 2 4	0 0	10 12		0 10		me (hou		50	52	54	00	00	-10	72		-10	40	

Summary for Subcatchment 33S: P8

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.017 af, Depth= 1.18"

A	Area (sf)	CN I	Description											
*	7,675		Impervious											
	7,675	98	100.00% In	npervious A	rea									
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Descrip	otion								
5.0					Direct	Entry,								
				Subca	tchmer	nt 338	6: P8							
				Hydro	graph									
0.0	06-1							- + 			- 	+ 	+ 	Runoff
0.0	55	0.05 cfs							+	Туре	 	24.	hr	
0.0	05				'' ! ! !	Polluti	on Re	duct						
0.04	45	+	· ¦¦¦ - I I I		¦¦				noff					
0.0	04	-i i		+ +	ii	r r	R		f Vol unofi				· 1	
a 0.03	35			- + +		+ + 		- +	+		c=5.			
0.0 (cts)	 03				!	L L 				!	CN	=0/	98-	
0.02 او				$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$	<mark> </mark>			- <u> </u> 		¦ 	- 	$\frac{1}{1} = -$	$\frac{1}{1} = -$	
0.0	= _ 	+		$ \frac{1}{T}$ $ \frac{1}{T}$ $ \frac{1}{I}$ $-$		 		- 			- 	 	$\frac{1}{T} = -$	
0.0	i			- + +				- +	 + 		 	 + 	 + 	
0.0									 + 		 -	 	 + 	
0.0	05					<u>-</u> <u>-</u> 	·'= = ='= 		<u>-</u> <u>-</u> - 	'	_' 		÷	
		····	······									////		
	0 2 4	68	10 12 14 1		2 24 26 me (hours)	28 30	32 34	36	38 40) 42	44	46	48	

Summary for Subcatchment 34S: P9

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.015 af, Depth= 1.18"

A	rea (sf)	CN I	Description											
	6,421	98	Impervious	Surface										
	6,421	98	100.00% In	npervious	Area									
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Descri	ption								
5.0					Direct	Entry,	I							
				Subca	tchme	nt 345	S: P9							
				Hydr	ograph									
0.05 0.044 0.044 0.044 0.044 0.032 0.036 0.036 0.036 0.032 0.036 0.032 0.026 0.024 0.022 0.026 0.024 0.022 0.026 0.014		- - - - - - <td></td> <td></td> <td></td> <td>Polluti</td> <td>- _ </td> <td>Ru Runo</td> <td>inoff ff Vo</td> <td>Rai Are olum ff D</td> <td>ea=6, ne=0. epth= Tc=5</td> <td>=1.4 421 015 =1.1</td> <td>0" - sf_ af- 8" - nin -</td> <td>Runoff</td>				Polluti	- _ 	Ru Runo	inoff ff Vo	Rai Are olum ff D	ea=6, ne=0. epth= Tc=5	=1.4 421 015 =1.1	0" - sf_ af- 8" - nin -	Runoff
0.012 0.01 0.008 0.006 0.004 0.002												+	+ + + +	
C) 	68	10 12 14 ⁻		22 24 26 26 (hours)	28 30	32 34	4 36	38	40 4	42 44	46	48	

Summary for Subcatchment 35S: P10

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.014 af, Depth= 1.18"

Ai	rea (sf)	CN	Descriptior	า												
	6,146	98	Impervious	Surfac	е											
	6,146	98	100.00% Ir	npervio	us A	rea										
Tc (min)	Length (feet)	Slope (ft/ft)			city sfs)	Descri	otion									
5.0						Direct	Entry	,								
				Sub	cato	chmen	t 35S	6: P	10							
				н	ydro	graph										
0.048 0.044 0.042 0.04 0.038 0.036							Pollut			Runo	n Ra ff A	rea=	all= =6,1	1.4 46	0" - sf	Runoff
0.034 0.032 0.03	2 - 2				 			- -	Rur	noff N Run		Dep	th=	1.1	8" -	
(f) 0.028 0.026	64 ()	+ +		$\frac{1}{1}\frac{1}{1}$ $\frac{1}{1}\frac{1}{1}$	¦ ! I		$\frac{1}{1} = -\frac{1}{1} =$ $\frac{1}{1} = -\frac{1}{1} =$	-¦ -!			- - 	Tc	–5. CN			
0.028 0.026 0.024 0.022 0.022 0.022 0.018 0.016 0.014 0.012	2													+ + + + + + +		
0.01 0.008 0.006 0.004	3 ¦ 5 ¦							- - -			- - -	- - - 	 	+ + <u>+</u> +	+ + - +	
0.002 (6 8	10 12 14	16 18 2	 	24 26	28 30	32	34	- 	40	- 		46	48	

Summary for Subcatchment 36S: P11

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1 0.017 af, Depth= 1.18"

/	Area (sf)	CN	Description										
*	7,429		Impervious	Surface									
	7,429	98	100.00% In	npervious A	Area								
Tc (min)		Slope (ft/ft)		Capacity (cfs)	Descript	ion							
5.0					Direct E	intry,							
				Subcat	chment	36S:	P11						
				Hydro	ograph								
0.0	55	- +				 - + 	 				+ - 	- + 	Runoff
0.	05				+	L - 4 !	! b			уре			
0.0	45	+			¦¦₽	oliutio	on Re		on Ra noff A				
		+		++	+ +	+	 Ri		Volu				
0.	04		, L I			L			Inoff				
0.0	35										=5.0 I		
.0 (cfs)	03										CN=C)/98	
<u> 6</u> 0.0	25	-1+		+ + I- I I I I I I	I + I I I I I I	+ 	 	+ + 			+ - 	- + 	
0.	02					L 	 		L	_ 	<u>+</u> - 	- <u> </u> 	
0.0							 	$\frac{1}{1} = -\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$			 - 	$-\frac{1}{1}$	
0.	01										- -		
0.0	05						 _						
	0 2 4	<u>í í í í í í í í í í í í í í í í í í </u>	10 12 14	16 18 20 2		8 30	32 34	36	38 40	42 4	44 46	5 48	
				Ti	me (hours)								

Summary for Subcatchment 37S: P12

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.07 cfs @ 7.91 hrs, Volume= Routed to Pond 47P : Pond #3 0.021 af, Depth= 1.18"

	Ar	rea (sf)	CN	De	scrip	otior	1																	
		9,368	98	Imp	perv	ious	sSι	irfac	ce															
		9,368	98	100	0.00	% Ir	npe	ervio	bus	Are	ea													
(n	Tc nin)	Length (feet)	Slop (ft/f		Velo (ft/s		С	apa; (acit cfs		Desc	crip	otio	n										
	5.0									I	Dire	ct	Ent	t ry ,										
							ę	Suk	oca	atcl	hme	ent	t 3'	7S	: P	12								
									Hyd	rogr	aph													_
	0.07			 - 	 -		 	1				 			 	 	 	 		 -	 	 		Runoff
	0.065		-1 <mark>0.07 c</mark>				+	+ 						L 		- 	+ +	+ +		уре				
	0.06				i I		1					F	Pol	luti	on	Rec	1	1	1	ainf	1	1		
	0.055						T					ī I		 !						rea				
	0.05			1	- 		+	+ 				+ 		 	 	Rι				me				
	0.045				 !		+					1			 	-1	⊤- K !	unc	DTT 1	Dep				
fs)		コンオーニー・		/	- 		1	<u> </u> 				<u> </u> ו ו		L	' 	-' '		+ 		-¦-I-C	=5.	u_n =0/		
Flow (cfs)	0.035		-1	/	-	 	+	+		 	. 	+		↓		-	+ 	+	⊢ – - I	-		<u>-0/</u>	<u>1</u> 0	
Flo	0.055	1 /1	+				+	· +		 		ן ד – – ו		 				т — —		-¦ ·		+		
	0.03	1 /	-ii	-	-		<u> </u>	<u> </u>				1			i	-i	<u> </u>	<u> </u> – –		-¦ ·			<u>i</u>	
	0.025			-	-		+	+		 		 +		 +	 	-!	+	 +	 ⊢ – -	 - ·	 	+	+	
	0.02	1 . Ai	🖉	-0	×		+	 		 		1 1		 	¦			- +	 			÷		
	0.015	;]/`] /!			\bigcirc			 		 		ا بے _		 	!		<u> </u>	 					1 1	
	0.01			 +				\square	\square			י ו + – –		 	 	 -	- - 	 +	 	 -		 +	 +	
	0.005			 			i	i			5A	i I		1	1	1	1	1	1	I I	1	1		
	0		·	/ - /	.< 			- <u>-</u>				<u>///</u>				Щ.	///		Щ.	Щ.		Щ.		*
		0 2 4	68	10	12	14	16	18			24 2 (hou		28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 38S: P13

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 7.91 hrs, Volume= Routed to Pond 47P : Pond #3 0.013 af, Depth= 1.18"

0.042 0.04 Type IA 24-hr 0.038 0.038 Pollution Reduction Rainfall=1.40" 0.036 Runoff Area=5,595 sf 0.037 Runoff Depth=1.18" 0.028 CN=0.988 0.022 CN=0.988 0.022 CN=0.988 0.022 CN=0.988 0.022 CN=0.988 0.022 CN=0.988 0.022 CN=0.988 0.023 CN=0.988 0.024 CN=0.988 0.025 CN=0.988 0.026 CN=0.988 0.027 CN=0.988	A	rea (sf)	CN			ption																	
Tc Length (feet) Slope (t/ft) Capacity (ff/sec) Description (cfs) 5.0 Direct Entry, Subcatchment 38S: P13 Nydrograph 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.044 0.044 0.042 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.025 0.024 0.026 0.024 0.027 0.024 0.028 0.024 0.029 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024		5,595	98	Im	perv	vious	Surf	ace															
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment 38S: P13 Hydrograph 0.042 0.042 0.042 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045 Pollution Reduction Rainfall=1.40" 0.036 Runoff Area=5,595 sf 0.037 Runoff Volume=0.013 af 0.028 CN=0/98 0.028 CN=0/98 0.029 0.021 0.021 CN=0/98 0.022 CN=0/98 0.021 CN=0/98 0.022 CN=0/98 0.021 CN=0/98		5,595	98	10	0.00	% In	nper	vious	Are	ea													
Subcatchment 38S: P13 Hydrograph 0.042 0.034 0.032 0.022 0.024 0.022 0.024 0.024 0.022 0.024 0.	(min)						Ca		5)		-												
Hydrograph	5.0									Direct	Ent	t ry ,											
Hydrograph							Sı	ubca	atcl	hmen	t 3	8S:	P	13									
0.042 0.04 0.036 0.036 0.036 0.036 0.032 0.032 0.032 0.03 0.028 0.018 0.0													-										
	0.0 0.03 0.03 0.03 0.03 0.02 0												 	 	Ru nof	nofi f Vc	Ra F Ai plui	ninfa rea me Dep	all= =5,{ =0.(th=	1.4 595 013 1.1 0 m	0" sf- af [_] 8" in_	Ru	nof
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48		0		10	/ // · · · // · · ·	14 1	/////	20	 22	24 26	28	30	32	3/	36	38	40	17		46	18		

Summary for Subcatchment 39S: P14

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.03 cfs @ 7.91 hrs, Volume= Routed to Pond 47P : Pond #3 0.011 af, Depth= 1.18"

	Ar	rea (s	f)	CN	D)esc	crip	tior	۱																	
		4,77	9	98	Ir	npe	ervi	ous	sι	ırfa	се															
		4,77	9	98	1	00.	009	% Ir	npe	ervi	ous	s Ar	ea													
(m	Tc in)	Leng (fe			ope t/ft)			city ec)	C		acii (cfs		Des	scri	ptio	n										
5	5.0												Dir	ect	En	t ry ,										
									ç	Sul	bc	atc	hm	en	t 3	9S	: P [.]	14								
		_									Нус	drog	raph	1												_
	0.036 0.034 0.032 0.03 0.028									· · · ·					Pol	 	on 1	 	Ru	not	Ra F	ainf rea	e IA all= =4,	=1.4 779	40" 9 sf	-
	0.026	1.1	-	 	K	 		 			 	 			 		 	Ru					=0.(oth=			_
	0.022	- 1			Y.				1		T	·		1	+				1	+		Тс	;=5.	0 n	nin	
ow (cfs	0.02 0.018 0.016								+ +		 				+ + + +			 -	+ + + +	+ + + +			_CN	l=0.	/98	-
	0.014 0.012 0.01						· · ·	- 			· 	- -	- 		· - - - - - - - - - - - - -	 		 		, ↓ ↓ ↓			_ _	· 		-
	0.008 0.006 0.004													· 	 			· - - - - - -	<u> </u> <u> </u>	 		· 	_ _	· 	- <u> </u> - <u> </u>	_
	0.002			-i 	· /		· 				 /		-		 					 			 	 		
	0	0 2	4	6	8 1	í 10	í 12	14	16	18	20	22 Time		26 urs)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment 40S: P15

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.03 cfs @ 7.91 hrs, Volume= Routed to Pond 47P : Pond #3 0.011 af, Depth= 1.18"

A	rea (sf)	CN	Description												
	4,741	98	Impervious	Surface											
	4,741	98	100.00% In	npervious	Area										
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Descri	ption									
5.0					Direct	Entry	,								
				Subca	tchmen	t 40S	6: P'	15							
				Hyd	ograph										
0.034 0.03 0.024 0.024 0.024 0.024 0.025 0.025 0.025 0.025 0.025 0.024 0.004 0.024 0		1 1 1 1 <t< td=""><td></td><td></td><td></td><td>Pollut</td><td></td><td>. l </td><td>Run noff</td><td></td><td>rea: me: Dep</td><td>all= =4,7 =0.0 th= =5.1</td><td>1.4 741 011 1.1</td><td>0" - sf af 8" -</td><td>Runoff</td></t<>				Pollut		. l 	Run noff		rea: me: Dep	all= =4,7 =0.0 th= =5.1	1.4 741 011 1.1	0" - sf af 8" -	Runoff
0.004 0.002			$\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$			$\frac{1}{1} = -\frac{1}{1} = -$	-		$\frac{1}{1} \frac{1}{1}$	 	- -	 	<u> </u> 	$\frac{1}{1}$	
	0 2 4	68	10 12 14		22 24 26 ime (hours)	28 30	32	34	36 3	38 40	42	44	46	48	

Summary for Subcatchment 41S: P16

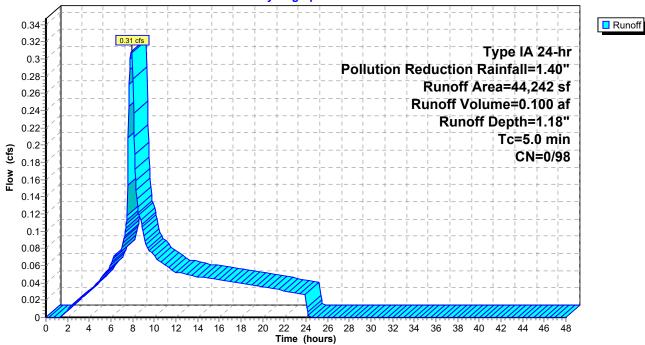
[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.06 cfs @ 7.91 hrs, Volume= Routed to Pond 47P : Pond #3 0.020 af, Depth= 1.18"

	A	rea (sf)	CN	Des	cription															
*		8,967	98	Imp	ervious	Surfa	ice													
		8,967	98	100	.00% In	npervi	ious A	rea												
(mi	Tc in)	Length (feet)	Slop (ft/f		/elocity (ft/sec)	Сар	acity (cfs)	Desc	criptio	on										
5	5.0							Dire	ct Er	try,										
						Su	bcat	chme	ent 4	1 S	: P′	16								
							Hydro	graph												
	0.07 0.065	1.1		- + - T cfs		+ 		- -	- + - · + - ·	- + - 		 	+ — — - 			 		+	+	Runoff
	0.06					<u>+</u> 		'' - 		- 	' 					/pe				
	0.055					+		-	40	lluti	on			ion noff						
	0.05		-i + i i			+ I	+	-	+ - · I	-	i			f Vo						
	0.045		+			+ I		- 	+ - ·	 I	 			uno					· 1	
							$\frac{1}{1} = -\frac{1}{1}$		1	- [=5.			
(cfs)	0.04	↓ /								- <u>L</u>	 	 	 	 	!		EN			
Flow (cfs)	0.035		+			+		-	+	 -	 	 	 		 		 	 +	 +	
Ē	0.03	;]] (-		+		-	+		 	 	 † — — -	, , , , , , , , – – – –			 — — -	' † – –	; +	
	0.025	;}`		_		 <u> </u>	 $\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	 <mark> </mark>	 <u> </u>	 -	 	 	 			 	 	 	$\frac{1}{1} = -$	
	0.02		/				i i LL.	!	,	_ L				, , , , L L	!		 		i L	
	0.015	;] []				 			 	 - L	 	 	 	 	 		 	 		
	0.01						TIM		i I	i I	i I	i I	i I		i	Ì	i I	i I		
	0.005		+- 	-+		+			- + - · 	- 	 	1 	T — — - 	r — — - 	- 		1 — — - 	т — — 	т — — 	
	C		· · · · · · · · · · · · · · · · · · ·			 	,,_		////	////	////	///	///	////	<u>///</u>	///	///	////	Щ	
		0 2 4	68	10	12 14	16 18	20 22 Tir	2 24 2 <mark>ne (hou</mark> r		30	32	34	36	38 4	40	42	44	46	48	

Summary for Subcatchment 50S: Existing Buildings

Includes the roofs from existing buildings 1-8 and some adjacent sidewalks for areas within master plan (apartments). See existing drainage basin map for corresponding areas.


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.31 cfs @ 7.91 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.100 af, Depth= 1.18"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

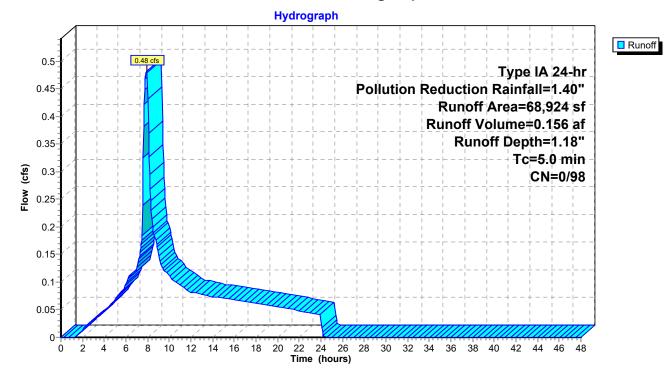
	A	rea (sf)	CN	Description		
*		44,242	98	Impervious	Roof & Adj	jacent Sidewalk
		44,242	98	100.00% In	npervious A	Area
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Subcatchment 50S: Existing Buildings

Hydrograph

Summary for Subcatchment 51S: Existing Impervious Areas

Includes existing impervious pavement within the new master plan development area (apartments). See existing drainage basin map for corresponding areas.

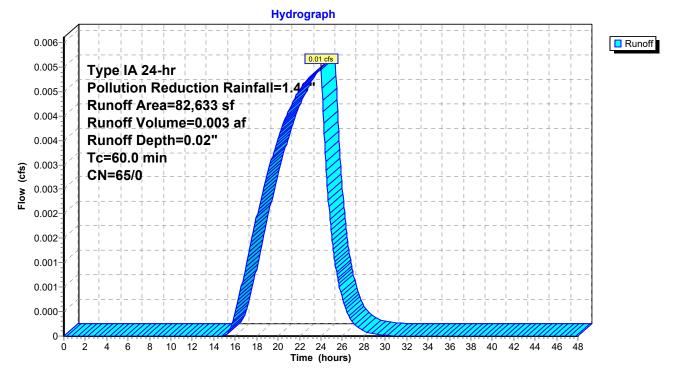

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.48 cfs @ 7.91 hrs, Volume= Routed to Reach 53R : Existing Discharge 0.156 af, Depth= 1.18"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

	Area (sf)	CN	Description		
*	68,924	98	Impervious	pavement	and sidewalk
	68,924	98	100.00% In	npervious A	Area
	Tc Length	Slop	be Velocity	Capacity	Description
	(min) (feet)	(ft/1	ft) (ft/sec)	(cfs)	
	5.0				Direct Entry,

Subcatchment 51S: Existing Impervious Areas


Summary for Subcatchment 52S: Existing Landscape Area

Runoff = 0.01 cfs @ 24.00 hrs, Volume= 0.003 af, Depth= 0.02" Routed to Reach 53R : Existing Discharge

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

Area (sf)	CN	Description		
82,633	65	Woods/gras	ss comb., F	Fair, HSG B
82,633	65	100.00% P	ervious Are	ea
Tc Length _(min) (feet)	Slor (ft/	,	Capacity (cfs)	Description
60.0				Direct Entry,

Subcatchment 52S: Existing Landscape Area

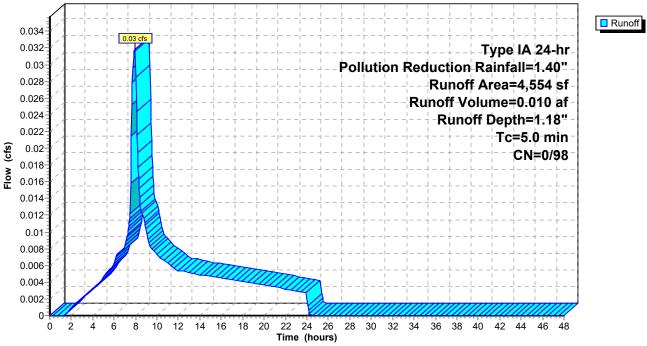
Summary for Subcatchment 94S: Pond #3

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.03 cfs @	7.91 hrs,	Volume=
Routed	to P	ond 47P : Pond #	‡ 3	

0.010 af, Depth= 1.18"

	4,349	98		er Sur																
	4,349	98	100.	00% I	mpe	erviou	s Are	ea												
Тс	Length	Slop		elocity	C	Capaci		Descri	ptio	n										
in)	(feet)	(ft/ft	:) (1	ft/sec)		(cf	/													
5.0								Direct	Ent	t ry ,										
					Su	bcat	chn	nent 9	94S	: P	on	d #	\$							
						Ну	drog	raph												
0.034		- + - +	- + F - + F	 		+ 	- -		+ +	 	 	-	+ +	+ +	 	 	- -	+ +	+ +	🗖 Ru
0.032		0.03 cf	s				-		 - 	 - 	 	¦	 <u> </u>	 	 	 	 		<u> </u>	
0.03	1 / 1	-ii		¦					; 	; 		; •		; 			IA			
0.028		+	1			 +	-		POI	lutio	on I	ĸeo	luct	+	\vdash	I		+	+	
0.026						L L	-			L	' 		Ru nof				J			
0.024		-{+		¦		$\frac{1}{1}$ $\frac{1}{1}$	- <mark> </mark>	$\frac{1}{1} \frac{1}{1}$	<u> </u> – –	 	 	ĸu		<u> </u>			-0.0 th=		<u> </u>	
0.022		+		·		+	-		+	 	 	 			/ L		=5.0			
0.02		-i+	-	·			-		+ 	- I	' 	. .	- + 	+ 	' ⊢		CN	+	+	
0.018	1.1	+		¦			-		<u> </u> – –	<u> </u>		¦	<u> </u>	<u> </u>	L			-0/	90	
0.016	1/1-1	+	 -	·					 	 	 		 	 	 	 	 	 	+	
0.014		+		·	+	+ +	-		- + I	- I	' 	-	' +	- + I	' ⊢ – – I	' 	- 	- + I	+	
0.012							-		⊥ – – I	∟ 	 	- 	1 	⊥ I	∟ I	 		1 – –	⊥	
0.0				¦					$\frac{1}{1}$	<u> </u> 			<u> </u>	<u> </u>		¦		<u> </u>	$\frac{1}{1}$	
800.0							-		+ 		 		¦	+ 	- 			+	+	
0.006			- + X 	ШД	\square	TIM			+ I	+ I	 	-	+ 	+ I	⊢ – – I	 		+ I	+	
0.004							44	Z	<u> </u> – –	L – –			<u> </u>	<u> </u>	L		 	1	$\frac{1}{1}$	
0.002					<u> </u>		1		-	-	-	-	-	-	-	-	-	-		
() ///////////////////////////////////	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1	1. 14	16	18 20	22	24 26	28	30	32		36	38	40	42	44	46	48	


Summary for Subcatchment 95S: Pond #1

[49] Hint: Tc<2dt may require smaller dt

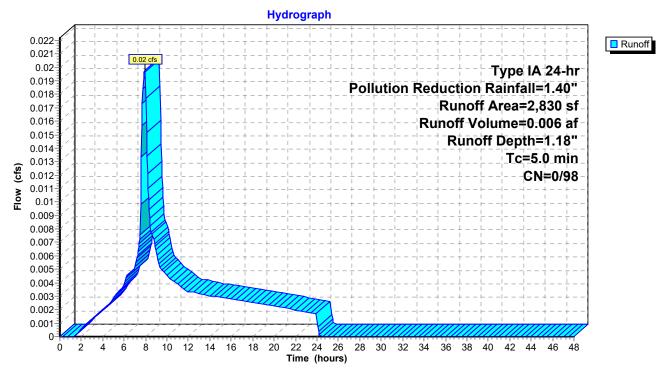
Runoff = 0.03 cfs @ 7.91 hrs, Volume= Routed to Pond 46P : Pond #1

0.010 af, Depth= 1.18"

A	rea (sf)	CN I	Description			
	4,554	98	Nater Surfa	ace, HSG B	3	
	4,554	98	100.00% In	npervious A	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
5.0					Direct Entry,	
			S	Subcatch	ment 95S: Pond #1	
				Hydro	ograph	

Summary for Subcatchment 96S: Pond #2

[49] Hint: Tc<2dt may require smaller dt

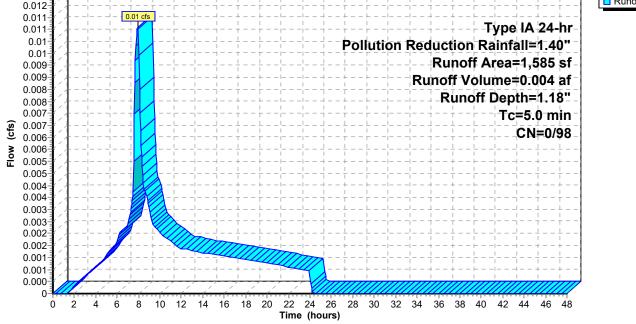

Runoff = 0.02 cfs @ 7.91 hrs, Volume= Routed to Pond 48P : Pond #2

0.006 af, Depth= 1.18"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type IA 24-hr Pollution Reduction Rainfall=1.40"

A	rea (sf)	CN	Description					
	2,830	98	98 Water Surface, HSG B					
	2,830	2,830 98 100.00% Impervious Area						
Tc _(min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment 96S: Pond #2

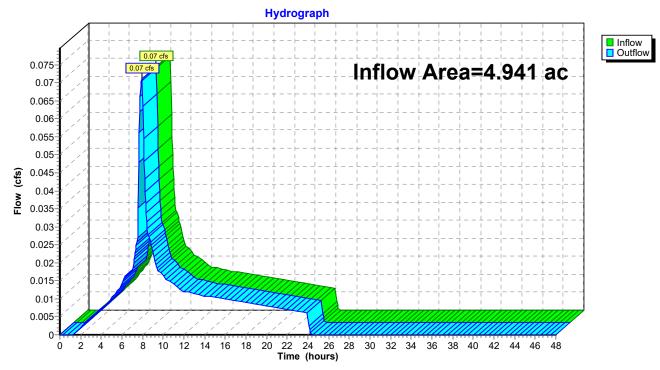

Summary for Subcatchment 97S: Pond #4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.01 cfs @ 7.91 hrs, Volume= Routed to Pond 49P : Pond #4

0.004 af, Depth= 1.18"

Area (sf)	CN Description						
1,585	98 Water Surface, HSG B						
1,585	98 100.00% Impervious Area						
Tc Length (min) (feet)							
5.0	Direct Entry,						
Subcatchment 97S: Pond #4							
Hydrograph							
0.012		Runoff					

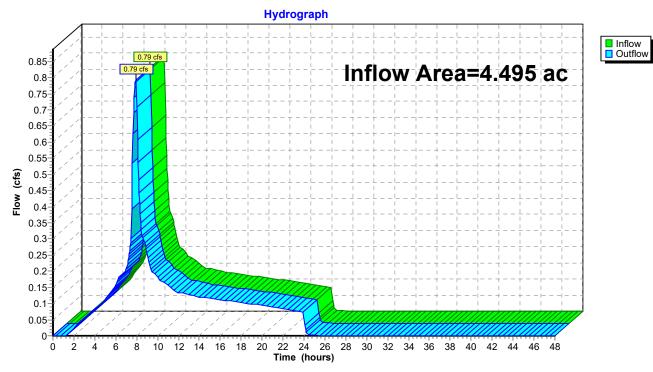


Summary for Reach 50R: Discharge

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	4.941 ac,10	0.00% Impervious, Inflow I	Depth = 0.06"	for Pollution Reduction event
Inflow	=	0.07 cfs @	7.91 hrs, Volume=	0.023 af	
Outflow	=	0.07 cfs @	7.91 hrs, Volume=	0.023 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


Reach 50R: Discharge

Summary for Reach 53R: Existing Discharge

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	4.495 ac, 5	7.80% Impervious, Inflow [Depth = $0.69"$	for Pollution Reduction event
Inflow	=	0.79 cfs @	7.91 hrs, Volume=	0.259 af	
Outflow	=	0.79 cfs @	7.91 hrs, Volume=	0.259 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 53R: Existing Discharge

Pine Springs Apartments - Village Green
Pine Springs Apartments HydroCAD Report ype IA 24-hr Pollution Reduction Rainfall=1.40"
Prepared by A&O Engineering LLC
Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC
Page 164

Summary for Pond 46P: Pond #1

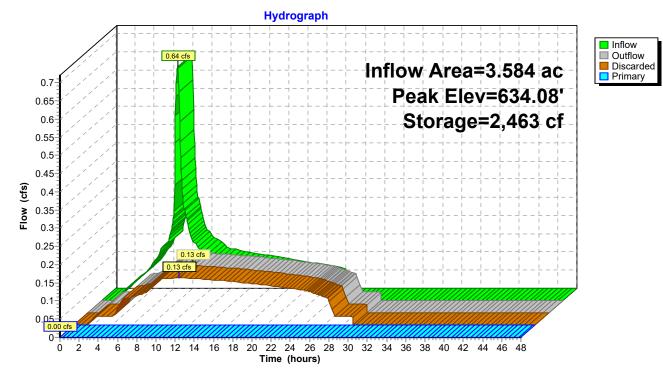
Inflow Area =	3.584 ac,100.00% Impervious, Inflow I	Depth = 0.69" for Pollution Reduction event				
Inflow =	0.64 cfs @ 7.91 hrs, Volume=	0.208 af				
Outflow =	0.13 cfs @10.95 hrs, Volume=	0.208 af, Atten= 80%, Lag= 182.6 min				
Discarded =	0.13 cfs @10.95 hrs, Volume=	0.208 af				
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af				
Routed to Pond 47P : Pond #3						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 634.08' @ 10.95 hrs Surf.Area= 2,791 sf Storage= 2,463 cf Flood Elev= 637.00' Surf.Area= 5,590 sf Storage= 11,426 cf

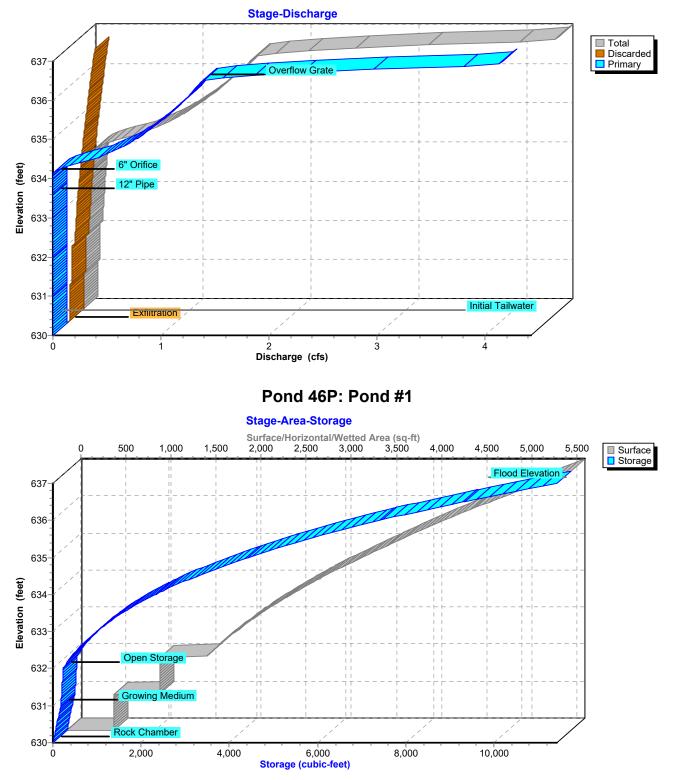
Plug-Flow detention time= 229.9 min calculated for 0.207 af (100% of inflow) Center-of-Mass det. time= 230.1 min (926.7 - 696.6)

Volume	Invert	Avail.Stora	ge S	Storage Description	n		
#1	632.00'	11,193	cf C	Open Storage (Irre	egular)Listed bel	low (Recalc)	
#2	631.00'	52		Growing Medium		below (Recalc)	
			-	18 cf Overall x 10	-		
#3	630.00'	181		Rock Chamber (Ir		elow (Recalc)	
				18 cf Overall x 35			
		11,426	ct I	otal Available Sto	rage		
Elevatior	n Surf.A	rea Per	im.	Inc.Store	Cum.Store	Wet.Area	
(feet) (so	q-ft) (fe	et)	(cubic-feet)	(cubic-feet)	(sq-ft)	
632.00			4.0	0	0	518	
633.00			7.0	754	754	1,386	
634.00			1.0	1,343	2,097	2,581	
635.00			4.0	2,098	4,195	3,691	
636.00			3.0	2,992	7,187	4,817	
637.00) 4,8	554 28	2.0	4,006	11,193	6,081	
Elevatior	n Surf.A	rea Per	im.	Inc.Store	Cum.Store	Wet.Area	
(feet) (so	q-ft) (fe	et)	(cubic-feet)	(cubic-feet)	(sq-ft)	
631.00) ;	518 10	4.0	0	0	518	
632.00) :	518 10	4.0	518	518	622	
Elevatior	n Surf.A	rea Per	im	Inc.Store	Cum.Store	Wet.Area	
(feet			et)	(cubic-feet)	(cubic-feet)	(sq-ft)	
630.00			4.0	0	0	518	
631.00			4.0	518	518	622	
D :				D .			
	Routing			Devices			
	Discarded			in/hr Exfiltration	over Surface ar	ea	
#2	Primary			Round 12" Pipe			
				0.0' CPP, mitered			
						= 0.0040 '/' Cc= 0.	900
<i>щ</i> о	Davias 0			10, Flow Area= 0.		4	haada
#3	Device 2	634.10' 6	0.0° V(ert. 6" Orifice C		to weir flow at low	neads

Pine Springs Apartments - Village Green **Pine Springs Apartments HydroCAD Report** ype IA 24-hr Pollution Reduction Rainfall=1.40" Prepared by A&O Engineering LLC Printed 2/21/2023 HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC Page 165


636.50' 24.0" W x 8.0" H 18° Overflow Grate C= 0.600 #4 Device 2 Limited to weir flow at low heads

Discarded OutFlow Max=0.13 cfs @ 10.95 hrs HW=634.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.13 cfs)


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=630.00' TW=630.50' (Dynamic Tailwater)

- -2=12" Pipe (Controls 0.00 cfs)
- -3=6" Orifice (Controls 0.00 cfs)

-4=Overflow Grate (Controls 0.00 cfs)

Pond 46P: Pond #1

Pond 46P: Pond #1

Summary for Pond 47P: Pond #3

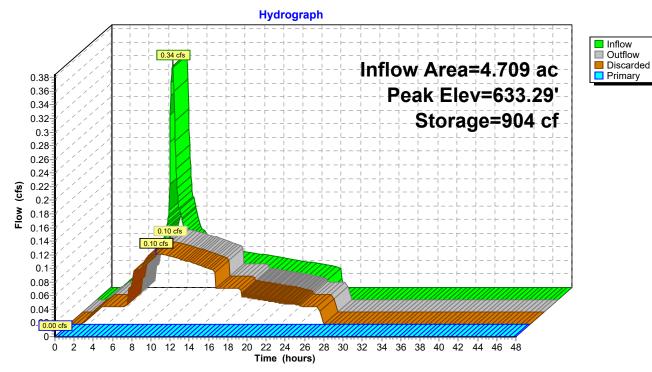
[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=56)

Inflow Area =	4.709 ac,10	0.00% Impervious, Inflow	Depth = 0.28" for Pollution Reduction event				
Inflow =	0.34 cfs @	7.91 hrs, Volume=	0.111 af				
Outflow =	0.10 cfs @	9.10 hrs, Volume=	0.111 af, Atten= 70%, Lag= 71.2 min				
Discarded =	0.10 cfs @	9.10 hrs, Volume=	0.111 af				
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af				
Routed to Reach 50R : Discharge							

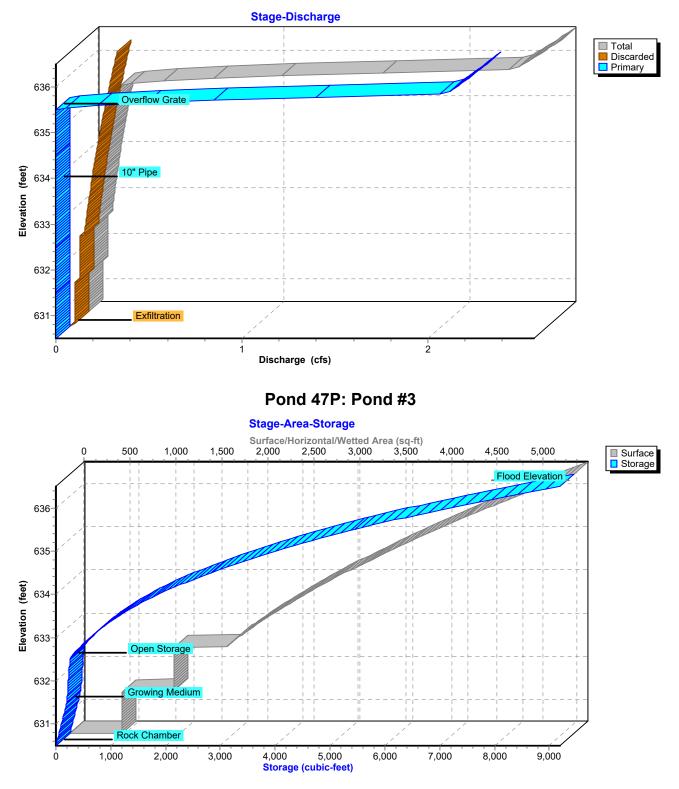
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 633.29' @ 9.10 hrs Surf.Area= 2,230 sf Storage= 904 cf Flood Elev= 636.50' Surf.Area= 5,485 sf Storage= 9,193 cf

Plug-Flow detention time= 92.8 min calculated for 0.111 af (100% of inflow) Center-of-Mass det. time= 92.9 min (789.5 - 696.6)

Volume	Invert	Avail.Stora	ge Storage De	scription			
#1	632.50'	8,937	cf Open Stora	age (Irreg	ular)Listed bel	ow (Recalc)	
#2	631.50'	57				below (Recalc)	
			568 cf Over			, , , , , , , , , , , , , , , , , , ,	
#3	630.50'	199	cf Rock Chan	nber (Irreg	gular) Listed be	elow (Recalc)	
			568 cf Over	all x 35.0	% Voids		
		9,193	cf Total Availa	ble Storag	je		
Elevation	Surf.A	rea Per	im. Inc.S	Store	Cum.Store	Wet.Area	
					(cubic-feet)		
(feet)		/	/ (1	<u>(sq-ft)</u>	
632.50			9.0	0	0	568	
633.50			5.0	890	890	1,839	
634.50				,674	2,564	3,374	
635.50	,			,630	5,194	5,131	
636.50	4,3	349 30	8.0 3	,743	8,937	6,431	
Elevation	Surf.A	rea Per	im. Inc.S	Store	Cum.Store	Wet.Area	
(feet)			et) (cubic-		(cubic-feet)	(sq-ft)	
631.50			9.0	0	0	568	
632.50			9.0	568	568	717	
002.00			0.0	000	000		
Elevation	Surf.A	rea Per	im. Inc.S	Store	Cum.Store	Wet.Area	
(feet)	(sq	-ft) (fe	et) (cubic-	feet)	(cubic-feet)	(sq-ft)	
630.50	Ę	568 14	9.0	0	0	568	
631.50			9.0	568	568	717	
Device F	Routing	Invert	Outlet Devices				
#1 E	Discarded	630.50' 2	2.000 in/hr Exfilt	tration ov	er Surface are	ea	
#2 F	Primary		10.0" Round 10				
		I	_= 480.0' CPP,	mitered to	conform to fill	, Ke= 0.700	
			nlet / Outlet Inve	rt= 633.92	'/632.00' S=	: 0.0040 '/' Cc= 0.	900
		I	n= 0.010, Flow A	Area= 0.55	sf		


Pine Springs Apartments - Village Green **Pine Springs Apartments HydroCAD Report** ype IA 24-hr Pollution Reduction Rainfall=1.40" Prepared by A&O Engineering LLC Printed 2/21/2023 HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC Page 168

635.50' 24.0" W x 8.0" H 18° Overflow Grate C= 0.600 #3 Device 2 Limited to weir flow at low heads


Discarded OutFlow Max=0.10 cfs @ 9.10 hrs HW=633.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=630.50' TW=0.00' (Dynamic Tailwater) -2=10" Pipe (Controls 0.00 cfs)

-3=Overflow Grate (Controls 0.00 cfs)

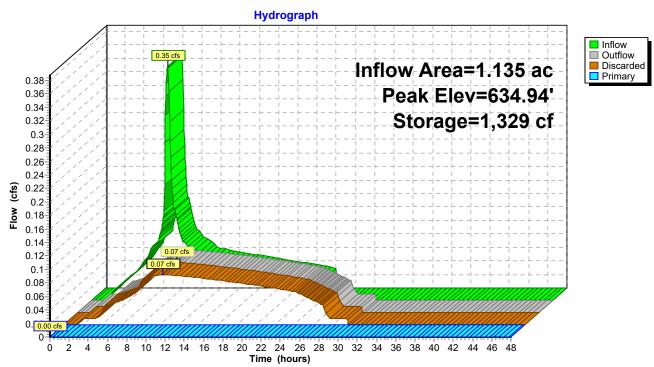
Pond 47P: Pond #3

Pond 47P: Pond #3

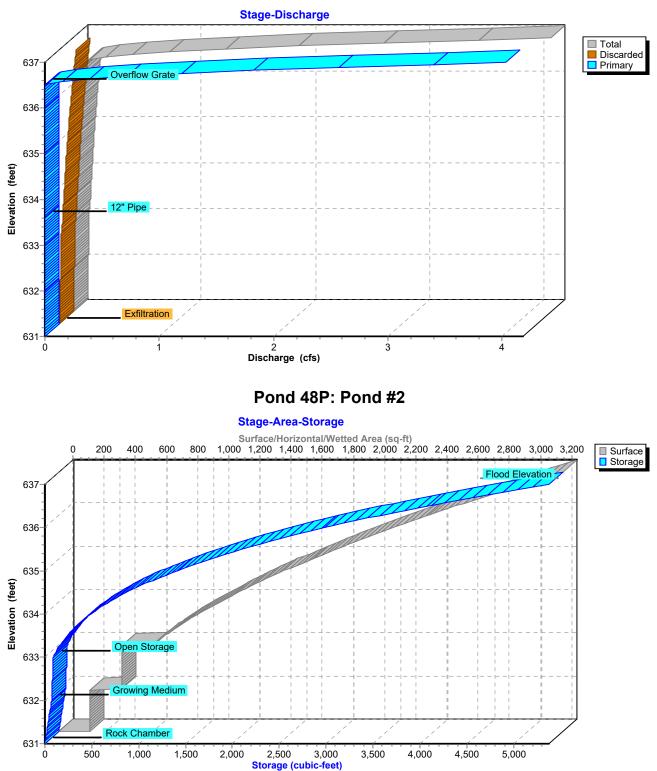
Pine Springs Apartments - Village Green
Pine Springs Apartments HydroCAD Report ype IA 24-hr Pollution Reduction Rainfall=1.40"
Prepared by A&O Engineering LLC
Printed 2/21/2023
HydroCAD® 10.20-3a s/n 04993 © 2023 HydroCAD Software Solutions LLC
Page 170

Summary for Pond 48P: Pond #2

Inflow Area =	1.135 ac,100.00% Impervious, Inflow	Depth = 1.18" for Pollution Reduction event
Inflow =	0.35 cfs @ 7.91 hrs, Volume=	0.112 af
Outflow =	0.07 cfs @ 10.35 hrs, Volume=	0.112 af, Atten= 79%, Lag= 146.6 min
Discarded =	0.07 cfs @ 10.35 hrs, Volume=	0.112 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Pond	d 46P : Pond #1	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 634.94' @ 10.35 hrs Surf.Area= 1,589 sf Storage= 1,329 cf Flood Elev= 637.00' Surf.Area= 3,234 sf Storage= 5,376 cf

Plug-Flow detention time= 225.7 min calculated for 0.112 af (100% of inflow) Center-of-Mass det. time= 225.8 min (922.4 - 696.6)


Volume	Invert A	vail.Storage	Storage Descript	ion		
#1	633.00'	5,285 cf	Open Storage (I	rregular)Listed be	low (Recalc)	
#2	632.00'	20 cf	Growing Mediur	m (Irregular)Listed	below (Recalc)	
			202 cf Overall x	10.0% Voids		
#3	631.00'	71 cf		(Irregular)Listed b	elow (Recalc)	
			202 cf Overall x			
		5,376 cf	Total Available S	torage		
Elevation	Surf.Are	a Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		t) (feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
633.00	20	2 86.0	0	0	202	
634.00				399	946	
635.00	,			1,315	1,853	
636.00				2,899	2,897	
637.00	2,83	228.0	2,387	5,285	3,812	
Elevation	Surf.Are	a Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-f	t) (feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
632.00	20	2 86.0	0	0	202	
633.00	20	86.0	202	202	288	
Elevation	Surf.Are	a Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)			(cubic-feet)	(cubic-feet)	(sq-ft)	
631.00	· · ·		· · · ·	0	202	
632.00				202	288	
002.00	20	2 00.0	202	202	200	
Device F	Routing	Invert Out	let Devices			
#1 E	Discarded 6	31.00' 2.00	0 in/hr Exfiltratio	n over Surface ar	rea	
#2 F	Primary 6)" Round 12" Pip			
			100.0' CPP, mitere			
			t / Outlet Invert= 63		= 0.0040 '/' Cc= (0.900
			0.010, Flow Area=			
#3 [Device 2 6)" W x 8.0" H 18° (5= 0.600	
		LIM	ited to weir flow at	IOW HEADS		

Discarded OutFlow Max=0.07 cfs @ 10.35 hrs HW=634.94' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=631.00' TW=630.00' (Dynamic Tailwater) -2=12" Pipe (Controls 0.00 cfs) -3=Overflow Grate (Controls 0.00 cfs)

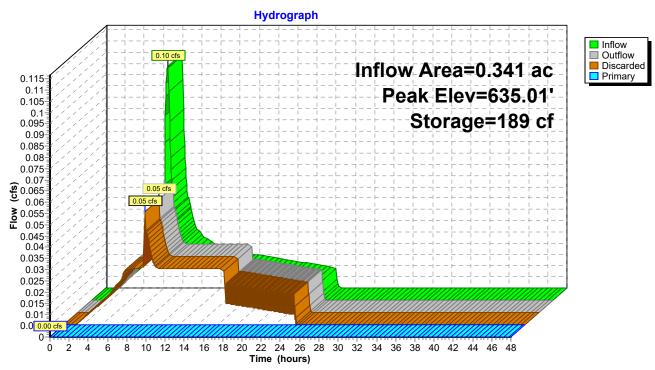
Pond 48P: Pond #2

Pond 48P: Pond #2

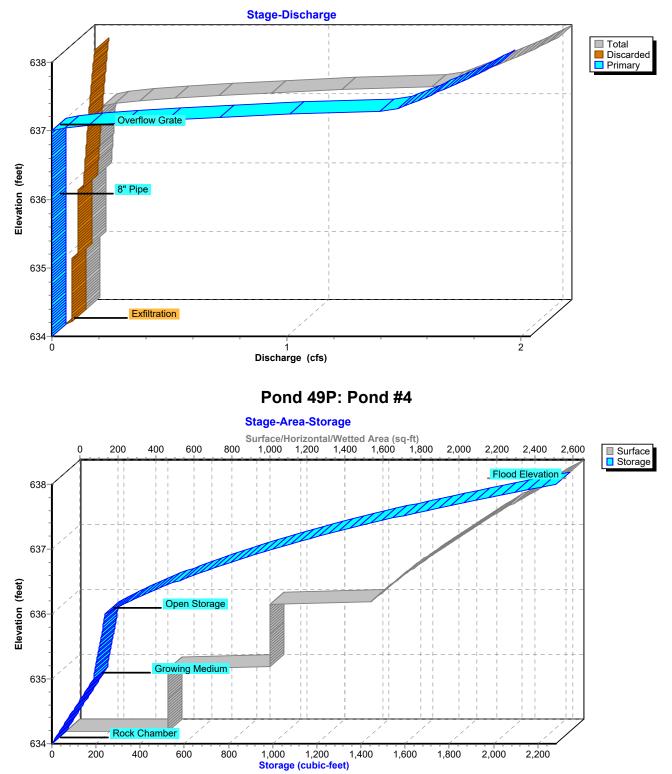
Summary for Pond 49P: Pond #4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=82)

Inflow Area =	0.341 ac,10	0.00% Impervious, Inflow	Depth = 1.18" for Pollution Reduction even	ent
Inflow =	0.10 cfs @	7.91 hrs, Volume=	0.034 af	
Outflow =	0.05 cfs @	8.46 hrs, Volume=	0.034 af, Atten= 52%, Lag= 33.0 min	
Discarded =	0.05 cfs @	8.46 hrs, Volume=	0.034 af	
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Routed to Pone	d 46P : Pond #	#1		


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 635.01' @ 8.45 hrs Surf.Area= 1,074 sf Storage= 189 cf Flood Elev= 638.00' Surf.Area= 2,659 sf Storage= 2,283 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 47.3 min (743.9 - 696.6)


Volume	Invert A	vail.Storage	Storage Descript	ion		
#1	636.00'	2,041 cf	Open Storage (I	rregular)Listed be	low (Recalc)	
#2	635.00'	54 cf	Growing Mediur	n (Irregular)Listed		
			537 cf Overall x			
#3	634.00'	188 cf		(Irregular)Listed b	elow (Recalc)	
			537 cf Overall x			
		2,283 cf	Total Available S	torage		
Elevation	Surf.Are	a Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-f	t) (feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
636.00	53	7 102.0	0	0	537	
637.00	1,00			758	1,087	
638.00	1,58	5 159.0	1,283	2,041	1,749	
-		. .				
Elevation	Surf.Are		Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-f		(cubic-feet)	(cubic-feet)	(sq-ft)	
635.00	53		-	0	537	
636.00	53	7 102.0	537	537	639	
Elevation	Surf.Are	a Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)	(sq-f	t) (feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
634.00	53	7 102.0	0	0	537	
635.00	53	7 102.0	537	537	639	
Dovice P	outing	Invert Out	let Devices			
	outing iscarded 6					
	-		0 in/hr Exfiltratio ' Round 8" Pipe	n over Surface al	rea	
#Z F	illiary C		125.0' CPP, miter	ed to conform to fil	II Ko- 0 700	
			t / Outlet Invert= 63			900
			0.010, Flow Area=		0.0100 / 00-0	
#3 D	evice 2 6)" W x 8.0" H 18° (C= 0.600	
			ited to weir flow at			

Discarded OutFlow Max=0.05 cfs @ 8.46 hrs HW=635.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=634.00' TW=630.00' (Dynamic Tailwater) -2=8" Pipe (Controls 0.00 cfs) -3=Overflow Grate (Controls 0.00 cfs)

Pond 49P: Pond #4

Pond 49P: Pond #4

MPD EXHIBIT

PLANNING & DEVELOPMENT SERVICES 375 West 4th Ave., Ste 204 P.O. Box 50721 Eugene, OR 97405 541-514-1029 www.bishowconsulting.com

VILLAGE GREEN SUBDIVISION & PINE SPRINGS MASTER PLAN

APPLICANT / NEIGHBORHOOD MEETING NOTES

February 1, 2023 - 5:30 p.m.

Applicant's Team:

Teresa Bishow, Bishow Consulting Colin Kelley, Property Owner/Developer Bailey Williams, A & E Engineering

Community Members:

During the virtual meeting, 7 community members participated. Most stated they lived either in the Village Green RV Park or within three blocks. Those providing names are listed below:

Stephen Lawn, Chamber of Commerce & Tourism, <u>stephenlawn@msn.com</u> Buck Strode, <u>buckstrode@gmail.com</u> Don Place, <u>DonPlace@aol.com</u> Tracy Evans, <u>tle2068@aol.com</u> Sharon Gayle

Teresa Bishow facilitated the virtual meeting beginning with introductions. She presented an overview of the Village Green Subdivision including number of proposed lots and use of the existing driveways on Row River. She presented an overview of the Pine Springs Master Plan including key features such as the number of proposed apartments, access and circulation, arrangement of open space and parking.

Colin Kelley described the continued operation and potential expansion of the RV Park and the property owner's desire to find someone to purchase and operate the hotel and restaurant/bar. Colin also shared about the property owner's commitment to provide housing, especially in small to mid-size communities.

Below are key questions and brief responses by the applicant's team.

KEY QUESTIONS AND COMMENTS

1. How can people learn more about the project? What applications are required?

The project requires City approval of the Village Green Subdivision and Pine Springs Master Plan applications. Each application requires a public hearing before the Planning Commission. After considering public comments, the Planning Commission will forward a recommendation to the City Council. The City Council will also hold a public hearing before taking final action.

2. Will the Village Green Hotel and restaurant be re-opened? What are the plans for the hotel?

The property owners hope to find a local buyer interested in investing in the hotel/restaurant and re-opening with about 40 guest rooms. The purchase of the hotel can't occur until that portion of the site is on its own legal lot. The RV Park will be on a separate legal lot allowing it to be owned independently or by the same person that buys the hotel.

3. What are the plans for the RV Park? Can a mailbox, community restroom or laundry room be provided for residents?

The property owners plan to continue to operate the RV Park. The RV Park lot will allow a small expansion of the number of spaces or enhanced amenities. The current property owners are looking into providing a mailbox for residents and seeing how the existing building on the site might provide other amenities for residents.

4. Once the Pine Springs Apartments are complete, will the property owners look to sell the property?

The property owners are constructing the new apartments for a long-term hold. The family-owned business has built apartment complexes in several Oregon communities and have retained the properties following construction – they do not "flip" the property.

5. Will Pine Springs Apartments be income-controlled housing?

No. The apartments will be market based rental units.

6. What is the design of the apartments and what type of households do you foresee renting units?

The apartments each have 2-bedrooms and 2-baths and access to an outdoor patio or 2nd floor balcony. The apartment floor plans are attractive to a wide range of households including retirees, young adults and families with children. The property

owners have developed garden style apartments in several other communities along I-5 such as Junction City, Roseburg, Springfield and Eugene.

7. Has a traffic study been done?

Yes. The developer retained Sandow Engineering to conduct a traffic study. The scope and methodology of the traffic study complied with City and ODOT requirements. The study concluded that a traffic signal was not warranted at the intersection of Row River Road and Jim Wright Way. The Sandow Engineering study also included looked at crash data and any known traffic problems in the vicinity.

8. When will the apartments be constructed and when will the hotel/restaurant re-open?

The goal is to obtain City approval of the Subdivision and Master Plan by fall. Once new lots are created, the hotel property can be sold to new owners and the hotel/restaurant re-opened. Before construction can being on the apartments, City needs to approve a more detailed set of plans reviewed during a Site Plan Review process. Ideally, restoration of the hotel/restaurant will occur while the apartments are being built so upon completion people can live, work, dine and stay.

9. Are the new commercial lots being listed by a real estate broker? Has there been any interest in the new commercial uses on the property?

The property owners have reached out to local hotel groups and a few parties have expressed interest. Until the subdivision is approved, the hotel can't be sold. The property owners have an agreement with a developer interested in the future commercial lots on Row River.

In closing, Teresa again provided her e-mail address and offered to respond to any further inquiries regarding the project.

Meeting notes prepared by Teresa Bishow.

NEIGHBORHOOD MEETING

- Village Green Subdivision
- Pine Springs Master Plan

February 1, 2022 - 5:30 p.m.

Please join meeting from your computer, tablet or smartphone. https://meet.goto.com/920307973

You can also dial in using your phone. United States: <u>+1 (646) 749-3122</u>

Access Code: 920-307-973

Get the app now and be ready when your first meeting starts: <u>https://meet.goto.com/install</u>

The Village Green Subdivision will create 5 lots for commercial and residential use. The site is located at 725 Row River Road in Cottage Grove, Oregon. One lot will allow reopening the hotel/restaurant, one lot will allow for continued operation of the RV Park, two lots are for future commercial use on Row River Road and one lot is for the Pine Springs Apartments.

The Pine Springs Master Plan consists of 120 new 2-bedroom / 2-bath apartment units and a leasing office / apartment unit for an on-site manager. It also includes parking and open space amenities for residents.

The Pine Springs Master Plan allows for the continued operation of the Village Green Hotel and RV Park and space for future new commercial uses on Row River Road.

Please see the enclosed Tentative Subdivision Plat and Pine Springs Master Plan Site Plan.

For more information contact:

Teresa Bishow at teresa@bishowconsulting.com or 541-514-1029.

NEIGHBORHOOD MEETING MAILING LIST - January 5, 2023				
Autozone Development Corporation	123 S Front St	Memphis	TN	38103
Cave Income Properties LLC	PO Box 40051	Eugene	OR	97404
Kristen Woodard LLC	PO Box 10666	Eugene	OR	97440
McDonalds Cottage Grove	2855 Willamette St	Eugene	OR	97405
Oregon State of	3040 25th St SE	Salem	OR	97310
PB Row River LLC	10502 126th Ave NE	Kirkland	WA	98033-4723
Peacehealth	1115 SE 164th Ave	Vancouver	WA	98683
Pine Springs LLC	3025 W 7th Pl	Eugene	OR	97402
ST Vincent De Paul Society of Lane County Inc	PO Box 24608	Eugene	OR	97402
Sunlight Basin LLC	PO Box 948	Powell	WY	82435
Wal-Mart Real Estate Business Trust	PO Box 8050 Ms 0555	Bentonville	AR	72716-0555
Friends of Mt. David	PO Box 22	Cottage Grove	OR	97424

VILLAGE GREEN SUBDIVISION AND PINE SPRINGS MASTER PLAN NEIGHBORHOOD MEETING Posted Notices

